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Abstract
A sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and
instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation
approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial
neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills thematerial symmetry
conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material
symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite
element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement
between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on
anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials
at lesser computational effort.

Keywords Nonlinear multiscale simulation · Metamaterials · Constitutive modeling · Anisotropic hyperelasticity · Machine
learning

1 Introduction

Recent progress inAdditiveManufacturing (AM) andmicro-
fabrication technologies has opened up a whole new set of
possibilities for the realization ofmetamaterials, i.e., artificial
microstructures that exhibit properties and behaviors extend-
ing beyond the capabilities of ordinary materials [1]. In the
context ofmechanicalmetamaterials [2,3], besides character-
istics such as low mass density and high stiffness or strength
[4,5], in recent years also elastic flexibility and tailored buck-
ling [6,7], pentamode, auxetic and chiral effects [8–10],
negative thermal expansion [11], or programmable behav-
ior such as deployability and self-assembly [12–14] have
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been explored. Such mechanical metamaterials are realized
by cellularmicrostructures, often beam lattices, which can be
fabricated not only from stiff metals, but also from flexible,
elastically deformable and multi-functional materials such
as polymers, elastomers, or hydrogels. These metamaterials
pave a pathway for a wide variety of multifunctional applica-
tions, such as energy harvesting and storage [15], bio-medics
and medical devices [16], soft robotics [17], and many more
[3].

The mechanical modeling of such flexible beam lattices
is particularly challenging, since their microstructure and
soft material constituents allow for geometrically large elas-
tic deformations that are accompanied by instabilities due
to strut buckling [7,18], resulting in a highly nonlinear and
anisotropic effective behavior. Full-scale simulation using
3D continuum finite elements (FE) is generally not feasible
and also (geometrically) nonlinear 3D beam element dis-
cretizations can become computationally expensive and only
feasible for latticeswith amoderate amount of cells [19]. Fur-
thermore, to resolve instabilities and ensure convergence of
iterative solution schemes, nonlinear post-buckling analysis
methods, such as buckling-mode perturbations [18,20], are
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required, which incur further computational effort and com-
plication.

Multiscale simulation approaches are generally preferred
for microstructured objects and metamaterials, which have
already been widely applied to lattice structures in the lin-
ear, infinitesimal strain regime, also for multiscale design
and topology optimization [21–24]. Such approaches require
that themicrostructure is periodic and sufficiently small com-
pared to the macroscale, i.e., that scales are separated. Then,
the effective behavior for the microstructure can be homog-
enized from a representative unit cell (RUC) to relate the
stress-strain response from microscale to macroscale, where
the structure can then be regarded as a continuum [25].

In the context of nonlinear problems, the micro-to-
macro transition can either be performed concurrently, using
FE2 methods, or sequentially, using homogenized effec-
tive constitutive models [26,27]. The concurrent approach
has already been successfully applied to beam lattice struc-
tures in [20,28], even including higher-gradient and curvature
effects. However, it is computationally expensive, since solv-
ing a macroscale problem requires the solution of many
microscale problems—one for each FE quadrature point in
each iteration. Furthermore, in [20] only relatively small
compressive strain ranges were investigated for buckling-
dominated 3D lattices (−0.6% for a BCC structure and−5%
for an Octet structure), which indicates that the concurrent
multiscale approach also suffers from stability issues. For
sequential nonlinear multiscale simulation, the main chal-
lenge is to formulate and identify an effective constitutive
model, which—in the case of elastic beam lattices—should
be hyperelastic for finite elastic deformations, reflect the
anisotropy/material symmetry of the microstructure, and
closely represent the actual microstructural behavior, which
is highly nonlinear due to differences in stretch, bending, or
buckling-dominated deformations. For simpler 2D and mod-
erately nonlinear 3D lattices, analytical constitutive models
were developed in [29–32]. However, for buckling-driven
3D lattices, analytically formulated models do not pro-
vide the necessary flexibility [33], which suggests the use
of data-driven methods. In recent years, many such data-
driven constitutivemodeling approaches have been presented
for anisotropic, hyperelastic, and inelastic material behav-
ior, e.g., using reduced basis models [34,35], clustering
techniques such as self-consistent clustering analysis [36–
38], polynomial or spline interpolation [39–41], or machine
mearning (ML) with artificial neural networks (ANN) [42–
50]. To the best of our knowledge, only in [51] ANN-based
constitutive models have been applied to the multiscale sim-
ulation of highly geometrically nonlinear, buckling-prone
microstructures. However, the work is restricted to 2D appli-
cations, material symmetry is not considered in the material
model formulation, and the accuracy of the effective consti-
tutive model itself is not assessed.

Generally, to ensure both accuracy and efficiency, data-
driven constitutive models should:

(1) Be flexible in terms of their formulation so that highly
nonlinear behavior can be represented;

(2) Incorporate as much structure of the problem as possible
to ensure generalization capabilities (i.e., they should be
physics-informed, e.g., by being formulated as hypere-
lastic, objective and respecting material symmetry);

(3) Require only sparse calibration data or involve smart data
acquisition strategies to save computational or experi-
mental resources; and

(4) Allow efficient evaluation to save computation time and
effort when employed in (multiscale) finite element sim-
ulations.

Thus, the goal of this work is to develop a nonlinear
sequential multiscale method for the simulation of the highly
nonlinear finite deformation behavior of elastic 3D beam
lattices using accurate and efficient, yet flexible ML-based
constitutivemodels based onANNs, inspired by our previous
work [33]. On the microscale, the RUC of a body-centered
cubic (BCC) lattice is modelled as geometrically exact 3D
beam structure with a linear elastic constitutive model,
which results in a nonlinear, hyperelastic effective behav-
ior. However, as mentioned above, these microstructures
are prone to instabilities due to beam buckling, which—in
practice—occur due to imperfections during manufacturing.
For nonlinear post-buckling analysis, here only geometrical
perturbations of the beam centerline are considered, while
material and cross-section shape are assumed as ideal, in
contrast to, e.g. [52,53]. While usually eigenforms of the
structure are prescribed as perturbations, see [18,20,53–55],
here a purely stochastic approach is pursued. As we will
demonstrate, this not only reduces the manual effort of
bucking eigenvalue analysis, but also significantly reduces
parasitic stresses in the homogenized responses, cf. [18].
The homogenized effective energy potentials and stresses
obtained for various applied deformation gradients are then
used as training and validation data for ANN-based con-
stitutive models. To assesses their accuracy, generalization
capabilities and efficiency in terms of required training
data and evaluation times, three types of material models
are compared: a hyperelastic model fulfilling exactly the
cubic anisotropy, a hyperelastic model approximating the
cubic anisotropy through data augmentation, cf. [44], and
an elastic, stress-based model also approximating the cubic
anisotropy through data augmentation. Hereby, it is shortly
remarked that [44] considers data augmentation only in terms
of the values of the elastic energy density,whereas the present
work extends this approach also to stress values. In terms
of material symmetry, the approaches of this work rely on
the group symmetrization of [33] and the approximation
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through data augmentation. These approaches are applicable
to arbitrary symmetry groups without any of the restrictions
of invariant-based approaches relying on structural tensors
and human-driven decisions on which invariants to consider.
Finally, the hyperelastic ANN-based constitutive models are
implemented into a nonlinear FEM so that the sequential
multiscale simulation can be executed and verified in terms
of convergence behavior and comparisonwith full-scale sim-
ulation of BCC lattice structures. Altogether, we summarize
the main contributions of this work as:

– Development, ANN-based implementation and valida-
tion of a sequential multiscale method for highly nonlin-
ear, buckling-driven 3D beam lattices.

– Evaluation of different anisotropic, ANN-based effective
constitutive models for finite deformations in terms of
accuracy and computation times. For learning the mate-
rial symmetry, data augmentation approaches for strain
energy densities and stresses are shown to increase the
network training times, but significantly reduce their
inference times.

– Evaluation of efficient data generation strategies for the
homogenization of microstructural instabilities using a
stochastic perturbation approach, avoiding further com-
putational expenses of eigenform-based approaches.

The manuscript is organized as follows. The description
of the framework for the simulation and homogenization of
the microscale RUCs is presented in Sect. 2, including the
stochastic perturbation approach and its verification. Then,
the constitutive modeling framework using ANNs is estab-
lished in Sect. 3, the models are trained with the microscale
data and compared against each other in terms of accuracy
and computational performance. In Sect. 4, the nonlinear
FE multiscale simulations are performed with the calibrated
models and compared to full-scale simulations of lattice
structures. Finally, themanuscript concludeswith a summary
and outlook in Sect. 5.

2 Microstructuremodeling and simulation

2.1 Beammodeling of lattice unit cells

In this work, beam lattices are mechanically modeled as
geometrically exact, shear-deformable 3D beam structures
[56,57]. This beam model captures large deformations and
rotations of the beam centerline r : [0, L] → R

3 and its
cross-section, which is described by an orthonormal field
R : [0, L] → SO(3). However, due to the use of a linear
elastic constitutivemodel that is characterized by theYoung’s
modulus E and Poisson’s ration ν of an isotropic material, it
is only applicable to moderate strains. The balance equations

of linear and angular momentum read as:

f ′(s) + f̄ (s) = 0,
m′(s) + r ′(s) × f (s) + m̄(s) = 0,

∀s ∈ (0, L), (1)

where f and m are the internal forces and moments, which
are computed in terms of the kinematic unknowns r and R, f̄
and m̄ are externally applied distributed forces andmoments,
which are always zero here for homogenization purposes,
and ′ = d/ds denotes the arc-length derivative. As boundary
conditions (BCs) at s = 0 and s = L , either centerline
positions and rotations (essential / Dirichlet BC) or forces
and moments (natural / Neumann BC) must be prescribed.

For solving the boundary value problems (BVPs), here the
beam model is numerically discretized by the isogeometric
collocation method from [58]. First, the centerline curve is
parameterized as a B-spline or non-uniform rational B-spline
(NURBS) curve:

rh(s) =
n∑

i=1

Ni (s)r i , (2)

where Ni : [0, L] → R are C p−1-continuous NURBS basis
functions of a certain degree p > 0 with � = n − p inter-
nal elements and r i ∈ R

3 are the n corresponding control
points—similar to shape functions and nodal displacements
in classical FEM. For more details on NURBS and isoge-
ometric methods, see [59] and [60], respectively. Here the
cross-section rotations Rh are parameterized in terms of unit
quaternions and then also discretized asNURBScurves. Sub-
stituting these discretizations of the kinematic unknowns into
the balance equations (1) and evaluating them at n suitable
collocation points then yields a nonlinear system of equa-
tions, which can be solved using Newton’s method in order
to determine the deformed configuration of the beam, see
[58] for details.

Beam structures consisting of several beams can be mod-
eled by aggregating the discertizations and nonlinear systems
of the individual beams into one. Joints, where two or more
beam end-points meet at a node and are coupled together, are
here assumed to be rigid, i.e., the centerline displacements
(and thus the positions in the current configuration) and the
changes of the cross-section orientations have to be equal for
all k coupled end-points:

Δr1 = · · · = Δrk (⇔ r1h = · · · = rkh),

ΔR1 = · · · = ΔRk .
(3)

Here, we use superscript indices to indicate quantities that
relate to the end-points (nodes) of different beams, i.e., r j

h is
the centerline position of the j-th beam of the joint, which is
given by either the first or last control point of the discretiza-
tion of that beam. Furthermore, forces and moments have to
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be transferred at the joints, i.e., the balances of forces and
moments have to be fulfilled:

k∑

i=1

I j f j = 0,
k∑

i=1

I jm j = 0 , (4)

where I j = −1 if s = 0 for the beam end-point, i.e., r j =
r jh(0) = r j1, or I

j = 1 if s = L , i.e., r j = r jh(L) = r jn .
These constraintsmust also be implemented into the resulting
nonlinear system, see [58] for details.

2.2 Stochastic perturbation approach for nonlinear
post-buckling analysis

Since beams and beamstructures are prone to structural insta-
bilities such as buckling, nonlinear solution schemes such
as Newton-Raphson and arc-length methods, in which con-
verged solutions are computed iteratively for incrementally
increasing applied loads or displacements, often suffer from
convergence problems at the onset of buckling. Nonlinear
post-buckling methods try to overcome this issue typically
by applying some perturbation to the BVP, such that the
instability and ambiguity of the solution are overcome. These
perturbations, which are typically applied to the undeformed
geometric configuration in the context of numerical meth-
ods, can also be associated with uncertainties in geometric
parameters, e.g., stemming frommanufacturing inaccuracies
and tolerances.

Here, a stochastic, geometric perturbation approach is
employed, in which the centerline curves of the initially per-
fectly straight struts of a beam lattice structure are perturbed.
Since the struts are initially straight, they are simply defined
by their two end-points and parameterized as linear line seg-
ments, i.e., “NURBS” with p = 1, � = 1, n = 2. Now, order
elevation to increase the degree of the NURBS to p > 1 (p-
refinement) and subdivison into � > 1 equidistant elements
(h-refinement) are performed, yielding a C p−1-continuous
NURBS curve with n = p + � control points, which still
exactly represent a straight line, compare (2) and see [59] for
details.

Now, the struts are perturbed normal to the tangential
direction r ′ of the beam, i.e., within the cross-section plane.
Therefore only two parameters are needed to perturb each
individual control point r i : the magnitude ai ∈ R and the
angle ψi ∈ [−π

2 ,+π
2 ) of the perturbation (around the axis

defined by d3 = r ′ and starting from the d1-axis, as defined
by the orthonormal frame R = (d1, d2, d3)). From a practi-
cal point of view, the magnitude is assumed to be normally
distributed around a mean of 0 with a variance of σ 2, i.e.,
ai ∈ N (0, σ 2), and the angle uniformly distributed, i.e.,
ψi ∈ U(−π

2 ,+π
2 ), where +π

2 is excluded from the distribu-
tion as opposed to a uniform distribution as in literature [61].

Fig. 1 Illustration of stochastic perturbations of beam centerlines at a
joint with 4 beams

These uncorrelated random perturbations are applied to the
inner (non-end) points of each beam, yielding the perturbed
control points as:

r∗
i = r i + ai

(
sinψi d1i + cosψi d2i

)
, i = 2, . . . , n − 1.

(5)

However, for boundary points that are connected to other
beams, as it is always the case for the nodes of a peri-
odic lattice structure, the tangential direction of the beam
is ambiguous and it must be ensured that r1 = · · · = rk

holds, similar to (3). Thus, the perturbation:

r j
∗ = r j +

⎛

⎝
ax
ay
az

⎞

⎠ , (6)

with three separate perturbations ax,y,z ∈ N (0, σ 2), is
applied to the node, i.e., for each beam end-point of the joint,
j = 1, . . . , k. For the RUC of a lattice microstructure, this
applies not only to nodes inside the cell, but also to peri-
odically connected nodes on opposing boundary faces and
edges, which have to be identified for that purpose.

The stochastic perturbation procedure is illustrated in
Fig. 1, which shows the centerlines at a joint with 4 beams
in the unperturbed configuration and in 3 random perturba-
tions. In summary, the perturbations are controlled by three
parameters: the NURBS refinement given by p and �, as well
as the magnitude given in terms of the variance σ 2.
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2.3 Microstructural homogenization framework

The present work aims at the multiscale simulation of
the mechanical behavior of elastic beam lattices subject to
finite deformations. For this purpose, a separation of scales
between the macroscopic lattice structure and its periodic
microstructure are assumed. Furthermore, the effective con-
stitutive behavior of the microstructure is characterized by a
representative unit cell (RUC), which is given by a domain
Ω0 ⊂ R

3, and assumed to be hyperelastic, i.e., an effective
elastic energy density W exists. For any quantity defined on
the microscopic continuum φ : Ω0 → R, or in the same way
also for tensor-valued quantities, averages over the reference
configuration of the RUC are denoted as:

〈φ〉 = 1

V0

∫

Ω0

φ(X)dΩ0, (7)

where V0 = |Ω0| is the volume of the RUC. Hereby, a local
elastic energy density Wμ depending on the local deforma-
tion gradient Fμ within the RUC is assumed as known.
The local first Piola-Kirchhoff stress tensor is defined as
Pμ = ∂Wμ/∂Fμ. The effective deformation gradient F
is defined as:

F = 〈Fμ〉 . (8)

The effective elastic energy densityW , also referred to as the
effective potential, is defined as:

W = 〈Wμ〉 . (9)

The effective potentialW depends implicitly on the effective
deformation gradient F through the solution of the micro-
scopic boundary value problemof theRUC, i.e.,W = W (F).
Further, the effective potential W fully describes the effec-
tive constitutive behavior of the hyperelastic RUC. Hereby,
the effective stress is defined as:

P = ∂W

∂F
. (10)

To fulfill the Hill-Mandel condition [26]:

〈Pμ : δFμ〉 = P : δF , (11)

within this work affine and periodic displacement boundary
conditions are used to impose an effective F on the RUC,
which implies:

P = 〈Pμ〉 . (12)

For the homogenization of the effective behavior of a beam
lattice microstructure, each beam of the RUC is first per-
turbed as described in Sect. 2.2. For instance, Fig. 2 shows

Fig. 2 Illustration of the RUC of a BCC lattice with random centerline
perturbations

a body-centered cubic beam lattice with perturbed struts.
Then, the RUC is subjected to several effective deformation
modes, which are specified in terms of a displacement gra-
dient H = F − I , which is applied to the boundary nodes
of the RUC either as an affine displacement (Dirichlet, “d”)
or periodic displacement (“p”) BC:

“d” : u j = Hr j ,

“p” : u j+ − u j− = H(r j+ − r j−) ∧
f j− + f j+ = 0, m j− + m j+ = 0.

(13)

Here, r j ∈ R
3, j ∈ B are the reference centerline positions

of each node on the boundary of the RUC, where B is the set
of all boundary nodes, or r j+ , r j− ∈ R

3, { j−, j+} ∈ B± are
the pairs of nodes on opposite boundaries, respectively, and
u j , u j+ , u j− ∈ R

3 their corresponding displacements. To
realize scenarios that can correspond to practical, experimen-
tally conductablemechanical tests, e.g., uniaxial tensionwith
prescribed deformation in the x1-direction, unconstrained
displacements in x2, x3-direction and only P11 �= 0, “d” and
“p” BC may vary component-wise, see Table 1. The dis-
placement gradients are applied in a step-wise manner, i.e.,
H = H(λ), where the factor λ is increased in steps of 0.003
until the desired end values of λstop = ±0.3 (for tension
and compression) are reached, resulting in 201 data points
for each mode and perturbation. It should be noted also that
the rotational BC for the nodes are always periodic boundary
condition (PBC), i.e., all connecting corners need to rotate
in the same way independent of the applied displacement
gradient.

For discrete microstructures such as beam lattices, the
resulting effective strain energy densitiesW (F) and stresses
P(F) resulting from these simulations can in fact not be com-
puted as volume averages via (9) and (12), since there is not
microscopic continuum. However, the effective strain energy
densityW (F) can be computed as the sum of all strain ener-
gies of the beams of the RUC, divided by the volume V0 of
the RUC. Furthermore, by converting the volume averages to
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Table 1 Boundary condition
types and applied displacement
gradients for the different
deformation modes (BC “p”:
periodic, BC “d”: affine
displacement)

Mode BC1 BC2 BC3 H11 H12 H13 H21 H22 H23 H31 H32 H33

uniaxial d p p λ 0 0 0 0 0 0 0 0

biaxial d d p λ 0 0 0 λ 0 0 0 0

volumetric d d d λ 0 0 0 λ 0 0 0 λ

planar d d p λ 0 0 0 0 0 0 0 0

shear d d d 0 λ 0 0 0 0 0 0 0

biaxial-0.5 d d p λ 0 0 0 0.5λ 0 0 0 0

biaxial-0.33 d d p λ 0 0 0 0.33λ 0 0 0 0

shear-combined d p p λ 0.8λ 0 0 0 0 0 0 0

boundary integrals, the averaged first Piola-Kirchhoff stress
tensor is computed as:

P(F) = 1

V0

∑

j∈B
f j ⊗ r j , (14)

where f j are the internal forces at the node r j , cf. (1) and
(4).

2.4 Numerical results and verification

The numerical framework for the finite strain homoge-
nization of the effective behavior of beam lattice microstruc-
tures based on nonlinear post-buckling analysis using a
stochastic perturbation approach is now being applied to
a BCC lattice RUC. Here, and for the reminder of the
manuscript, the size of the microstructure is taken as L = 10
mm, i.e., V0 = 103 mm3, the aspect ratio is a = d/L = 0.1,
i.e., the beamdiameters are d = 2r = 1mm, and thematerial
parameters are E = 0.53 MPa and ν = 0.45. Furthermore,
the stochastic perturbations are applied with a spline refine-
ment of p = 2, � = 8 and a variance σ 2 = 0.1r . These
parameters were heuristically determined such that impact
of perturbations on the results at small strains is minimized,
while reliable convergence is achieved in the (post-) buck-
ling regimes. Furthermore, the following verifications were
performed to ensure the validity of the approach:

2.4.1 Consistency checks.

To assess the impact of instabilities and perturbations on the
numerical results, first a simple consistency check between
the numerically computed W (F) and P(F) is performed.
Consider the implicit dependency with respect to the process
parameter λ and expand W (λ) = W (F(λ)) around some λ̂

as follows:

W (λ) = W (λ̂) + ∂W

∂λ
(λ̂) · (λ − λ̂) + O(λ2) . (15)

Fig. 3 Depicting p := tr(P)/3 over λ for volumetric compression
both with all runs (top) and with the runs remaining after discarding the
unstable buckling band (bottom)

We now focus our attention on the tangent t(λ̂) = ∂W/∂λ(λ̂)

and apply the chain rule:

t(λ̂) = ∂W

∂λ
(λ̂) = ∂W

∂F
(F(λ̂)) : ∂F

∂λ
(λ̂)

= P(F(λ̂)) : ∂F
∂λ

(λ̂) .

(16)
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Fig. 4 Uniaxial deformation mode. All 9 components of P are shown over λ for the reference data, as well as all 206 stochastic perturbations and
their mean values

In viewof the discrete simulation results, the identities in (16)
motivate the introduction of the following quantities for the
second-order finite difference approximation of t(λn) = tn
at an incremental simulation step n:

tWn = Wn+1 − Wn−1

λn+1 − λn−1
, (17)

t Pn = Pn : Fn+1 − Fn−1

λn+1 − λn−1
, (18)

where Wn = W (λn), etc. The tangent approximations tWn
and t Pn can be computed independently based on the results
forW , F and P at stepsλn . The consistency of the simulation
results can then be evaluated based on the relative error:

en =
∣∣∣∣
tWn − t Pn

tWn

∣∣∣∣ . (19)

The present work considers the results of a simulation cam-
paign for H(λ) as sufficiently consistent and acceptable if in
a maximum of 6 out of the 201 simulation steps en surpasses
10%, 3 for λ < 0 and 3 for λ > 0. Otherwise, a new random
perturbation is applied an the simulation is re-run. All numer-

ical results shown in the following passed this consistency
check.

2.4.2 Buckling bands and outliers

During compression on multiple axis, e.g., during the vol-
umetric mode, it occurs that simulation results for some
“outlier” perturbations are stiffer compared to the majority
of other perturbations and buckle at higher stresses, see Fig.
3 (top). It can be seen that while the majority of runs fol-
lows roughly the same path, i.e., is on the same “band”, there
are some simulations following a somewhat stiffer path and
buckling only later, i.e., at a higher magnitude of applied
strain. From this second band, some simulations jump back
onto the first band, while the rest remains on this stiffer band.
Overall, it seems that this stiffer band represents an unsta-
ble equilibrium path and thus at higher compression many
solutions fall back to the softer, stable band. In order to elimi-
nate these outliers, all simulation runs, where the trace of P is
greater than 1.25 times the average of all runs at λ = −0.018,
were discarded, see Fig. 3 (bottom). From the 250 simula-
tions with random perturbations executed, we obtained 206
perturbations on the lower band, i.e., with a stable equilib-
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Fig. 5 Biaxial deformation mode. All 9 components of P are shown over λ for the reference data, as well as all stochastic 206 perturbations and
their mean values

rium path according to the aforementioned criterion. This
results in a rejection of 44 perturbations and a rejection rate
of 17.6%.

2.4.3 Comparison with reference data

The data obtained by the stochastic perturbation approach is
nowcompared to reference data from [18],where determinis-
tic perturbations were applied from a preceding computation
of buckling eigenmodes of the RUC. Figures 4, 5, and 6
show the reference data, all stochastic perturbations (206 for
each mode after discarding outliers), and their mean val-
ues for the components of P over λ for uniaxial, biaxial,
and shear-combined deformation modes, respectively. Due
to the applied boundary conditions and symmetries of the
structure that result in a cubic anisotropy of the effective
behavior, only some stress components should be non-zero
and some of those should be equal, e.g., P11 = P22 �= 0
for biaxial deformation. As can be seen in the figures, the
perturbation approach with a fixed, deterministic magnitude
and shape introduces “parasitic” non-zero stress components,
such as P12 and P21 in uniaxial compression in Fig. 4, which
are fairly substantial compared to P11. With the stochastic

approach used here, these parasitic stresses vanish (almost)
in the mean values, while the paths and values of the main,
non-zero stress components agree well for both approaches.
This shows that the stochastic perturbation approach delivers
reliable results and is able to diminish parasitic stress effects,
which are undesirable for fitting effective constitutivemodels
using the homogenized microstructural simulation data.

3 Effective constitutive modeling with ANNs

3.1 Basic material theory considerations

In the present work, somematerial-theoretic aspects are con-
sidered for the constitutive behavior and following model
formulation, namely material symmetry and objectivity.

For the lattice structures considered here, anisotropic
behavior is expected corresponding to the symmetry group
of the hyperelastic RUC. We, therefore, consider the stan-
dard anisotropy conditions for hyperelastic materials for the
effective potential, see, e.g., [62]:

W (F) = W (FQ) ∀F ∈ I nv+, Q ∈ G , (20)
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Fig. 6 Shear-combined deformationmode. All 9 components of P are shown over λ for the reference data, as well as all 206 stochastic perturbations
and their mean values

where I nv+ denotes the set of all invertible second-order
tensor with positive determinant and G refers to the mate-
rial symmetry group. The present work considers only finite
material symmetry groups and denotes the number of ele-
ments in G as #(G). The material symmetry conditions for
the effective potential (20) imply the following conditions on
the effective first Piola-Kirchhoff stress tensor:

P(F) = P(FQ)QT ∀F ∈ I nv+, Q ∈ G . (21)

For the present work G correspond to the symmetry group
of cubic materials, which for hyperelastic materials is suffi-
ciently described by the cubic group of #(G) = 24 rotation
operations.

Additionally, material objectivity, see, e.g., [63],

W (F) = W (QF) ∀F ∈ I nv+, Q ∈ SO(3) , (22)

is to be considered in the model formulation. Material objec-
tivity can be achieved through an intermediate variable
dependency on the right Cauchy-Green tensor C = FT F
or Green’s strain tensor E = (C − I)/2, i.e.:

W (F) = Ŵ (E) . (23)

Hereby it should be noted that the corresponding second
Piola-Kirchhoff stress tensor S = F−1P fulfills then:

S(E) = ∂Ŵ

∂E
(E) . (24)

Further material-theoretic properties are not taken into
account in this work. Thereby, it should be noted that, for
instance, material stability, polyconvexity and further prop-
erties are appealing, but they lie outside of the scope of the
present investigation. It should also be noted that the symme-
tries of the unperturbed RUC are broken by any perturbation
approach used for nonlinear post-buckling analysis, see Sect.
2.2. However, since the perturbations are small and random,
we still assume that the effective behavior complies to the
prescribed material anisotropy.

3.2 Constitutive models based on ANNs

3.2.1 Formulation of constitutive models

On the one hand, the present work approaches the formula-
tion of constitutive models based on the ideas of [33] and,
on the other hand, focusing on the approximation of some
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material-theoretic properties through partial data augmenta-
tion, cf. [44].

The work of [33] proposes to use machine learning and
artificial neural networks at the core of the model for-
mulation. More specifically, feed-forward neural networks
(FFNNs) are used for the formulation of hyperelastic and
elastic models. The hyperelastic model of [33] uses a core
FFNNpotential Ŵ FFNN(E) and a group symmetrizationwith
respect to G, yielding the model:

WWsym(F) = ŴWsym(E) ,

ŴWsym(E) = 1

#(G)

∑

Q∈G
Ŵ FFNN(QT E Q) .

(25)

The approach (25) fulfills per definition all material sym-
metry conditions (20), (21) and the material objectivity
condition (22). The corresponding stress derived of (25) will
be denoted as:

PWsym(F) = ∂WWsym

∂F
(F) = F

∂ŴWsym

∂E
(E) . (26)

The present work further consider two additional models
in view of the approximation of properties, which may be
expensive in terms of model complexity. The hyperelastic
model of [33] uses a group symmetrization for the exact ful-
fillment of the known material symmetry. The present work
investigates how well this property can be approximated by
1.) a hyperelastic model directly using a FFNN:

WWdir(F) = Ŵ FFNN(E) ,

PWdir(F) = ∂WWdir

∂F
(F) = F

∂W FFNN

∂E
(E) ,

(27)

and 2.) an elastic model also directly using a FFNN for the
second Piola-Kirchhoff tensor:

PPdir(F) = FSFFNN(E) . (28)

The models (27) and (28), of course, do not fulfill, in gen-
eral, the corresponding material symmetry conditions. But
since the transformation rules are known, a simple data-
augmentation can be considered such that the direct models
(27) and (28) may be able to intrinsically approximate the
material symmetry.

The symmetrized model (25) is, from a computational
point of view, far more expensive than the direct ones (27)
and (28) due to calling #(G) times the core FFNNs in the
group symmetrization for every given input F. It is there-
fore expected that the direct models (27) and (28) have an
advantage in terms of evaluation speed.

Table 2 FFNN architectures used within the hyperelastic models
WWsym, WWdir and the elastic model PPdir (HL: hidden layers)

Model Inputs Outputs Architecture

WWsym 6 (E) 1 (W ) 3 HL, 12 neurons each

WWdir 6 (E) 1 (W ) 3 HL, 18 neurons each

PPdir 6 (E) 6 (S) 3 HL, 22 neurons each

3.2.2 Implementation and technical details

Implementation framework All three material models
WWsym(F) as in (25), WWdir(F) as in (27) and PPdir(F)

as in (28) have been implemented in Python, version 3.7.8,
with the TensorFlow library, version 2.3.1 [64]. All sub-
sequent timings correspond to a system with a Nvidia GTX
970GPUwith 4GBofGDDR5RAM, an Intel XeonE3-1231
v3 CPU and 24GB of DDR3 RAM, on which the operating
system is Microsoft Windows 10 Pro N, version 20H2.
Networks From an implementation point of view, it should
be noted that both potential FFNNs Ŵ FFNN(E) of (25)
and (27) can be easily implemented with a six-dimensional
input (corresponding to the six degrees of freedom of
E) and a one-dimensional output. Analogously, the stress
FFNN SFFNN(E) of (28) can be implemented with a six-
dimensional input and output (corresponding to the six
degrees of freedom of E and S). All FFNNs have been
implemented using the swish activation function in all hidden
layers and the identity activation function in the output layer.
All resulting networks are then infinitely differentiable. The
architecture of the implemented FFNNs for the three consid-
ered models is tabulated in Table 2.

Taking [33] as a reference, 3 hidden layers seem to be
sufficient for the approximation of the effective constitu-
tive behavior of the cubic beam lattice materials investigated
therein, such that the presentwork follows this result. Hereby,
the symmetrized hyperelastic model WWsym uses in the
present work 12 neurons per hidden layer. The direct hyper-
elastic model WWdir considers 18 neurons per hidden layer
since it needs higher internal complexity in order to approxi-
mate the material symmetry from the given data. The elastic
model PPdir considers 22 neurons per hidden layer due to
additional complexity needed due to the loss of the hypere-
lasticity structure.
Vector matrix operations Further, the matrix operation
QT E Q is linear in E, such that amatrix-vector-operation on
the chosen six degrees of freedom of E can be constructed.
For instance, the vector:

E = (E11, E12, E13, E22, E23, E33)
T , (29)

can be used to carry the six degrees of freedom of E and the
operation QT E Q can be performed as QE with the 6 × 6
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matrix:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎝

Q2
11 2Q11Q21 2Q11Q31

Q11Q12 Q12Q21 + Q11Q22 Q12Q31 + Q11Q32

Q11Q13 Q13Q21 + Q11Q23 Q13Q31 + Q11Q33

Q2
12 2Q12Q22 2Q12Q32

Q12Q13 Q13Q22 + Q12Q23 Q13Q32 + Q12Q33

Q2
13 2Q13Q23 2Q13Q33

· · ·

Q2
21 2Q21Q31 Q2

31
Q21Q22 Q22Q31 + Q21Q32 Q31Q32

Q21Q23 Q23Q31 + Q21Q33 Q31Q33

Q2
22 2Q22Q32 Q2

32
Q22Q23 Q23Q32 + Q22Q33 Q32Q33

Q2
23 2Q23Q33 Q2

33

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(30)

Stress computation through automatic differentiation. The
gradient S(E) = ∂Ŵ/∂E is relevant for the hypere-
lastic models WWsym and WWdir for the computation of
stresses. Here, the automatic differentiation routines of
TensorFlow have been used. The differentiation is carried
outwith respect to the vector E such that a corresponding six-
dimensional stress vector S = ∂Ŵ/∂E is obtained, which is
then recasted as the full symmetric tensor Swith basic tensor
operations.Thefinal stress output for thefirst Piola-Kirchhoff
stress is then computed as P = FS.

3.2.3 Data augmentation and considered datasets

For any hyperelastic simulation yielding a hyperelastic
dataset:

D = {(F1,W1, P1), . . . } , (31)

here, the group augmentation is defined as:

G
D =
⋃

(F,W ,P)∈D

{
(FQ,W , P Q) : Q ∈ G

}
. (32)

More explicitly, for a dataset D containing #(D) data points
(F,W , P), the dataset G
D contains #(G) · #(D) corre-
sponding data points. For the investigation of cubic unit cells
at hand, a dataset D is augmented 24-fold. Consideration
of augmented datasests for the training of the direct models
(27) and (28) offers the option of approximating the known
material symmetry intrinsically.

It should be shortly noted that the group-based data aug-
mentation G
D goes beyond the approach of [44]. In [44]
only F and W were considered for Nickel and no illustra-
tion of the stress behavior is displayed. Therefore, in [44]
it remains unclear how well a data augmentation only on F
and W works for the approximation of the group symmetry
in terms of the stress evaluation. The present investigation is

concerned directly with the resulting stresses P of the unit
cells, since in engineering the stresses are of major impor-
tance. Calibration of hyperelastic models based only on F
and W could potentially yield models with fairly similar
W (F) = W (FQ) for some Q ∈ G, but with vastly different
gradients/stresses. In order to avoid this scenarios from the
beginning, the data augmentation is immediately extended
to G
D in order to optimize models based (1) on readily
available data for F, W and P , and (2) all corresponding
implications of the material symmetry.

In the following, the calibration dataset Dc without any
group augmentation corresponds to the simulation results
collected from the first five modes of Table 1, namely uni-
axial, biaxial, volumetric, planar and shear, averaged over
all 206 considered runs. This means that in (F,W , P), F
is the average of the deformation gradient over all 206 runs
for the corresponding fixed simulation step and correspond-
ing simulation mode. For W and P the analogous averages
are computed, which—based on the small absolute devia-
tions visible in Figs. 4, 5 and 6—are considered as sensible.
Each simulation mode has 201 simulation steps, i.e., Dc

contains #(Dc) = 5 · 201 = 1005 data points. The test-
ing modes of Table 1, namely biaxial-0.5, biaxial-0.33 and
shear-combined, denoted by the dataset Dt , are excluded
from the calibration dataset Dc, but monitored during cali-
bration in order to avoid overfitting. The group augmented
calibration dataset G
Dc will be used only for the direct
approaches with corresponding objective functions, as to be
presented in the following section.

3.2.4 Training approach

The standard mean squared error (MSE) of a model M ∈
{Wsym,Wdir, Pdir} with respect to a hyperelastic dataset D
is considered here as a suitable objective or loss function:

MSEW(D) = 1

#(D)

∑

(F,W ,P)∈D
(W − WM(F))2, (33)

MSEP(D) = 1

9#(D)

∑

(F,W ,P)∈D

3∑

i, j=1

(Pi j − PM
i j (F))2, (34)

MSE(D) = MSEW (D) + MSEP (D). (35)

The symmetrized hyperelastic model Wsym is trained with
MSE(Dc), while the direct alternative Wdir is trained with
MSE(G
Dc) based on the augmented calibration dataset.
The elastic direct model Pdir is trained with MSEP (G
Dc),
i.e., only based on the stress data.

The implemented models are trained with their respective
loss functions using the Adam optimizer, cf. [65], at what
Dt is used as validation dataset. The training of a model
is stopped if the loss function with respect to Dt does not
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Table 3 MSEP for all training
and evaluation deformation
modes, showing averaged values
± standard deviation with
respect to the symmetry group
G

deformation mode Wsym Wdir Pdir

uniaxial 335.44 ± 0.00 127.76 ± 30.13 4.42 ± 1.01

biaxial-1 391.40 ± 0.00 223.61 ± 4.25 6.66 ± 0.65

planar 582.03 ± 0.00 282.45 ± 8.81 7.38 ± 1.70

volumetric-1 442.89 ± 0.00 104.07 ± 0.18 2.77 ± 0.10

shear-simple 219.61 ± 0.00 167.62 ± 19.23 5.84 ± 1.02

biaxial-0.5 393.03 ± 0.00 324.77 ± 18.09 71.62 ± 32.17

biaxial-0.33 423.31 ± 0.00 317.22 ± 12.92 67.60 ± 35.95

shear-combined 1451.63 ± 0.00 1272.38 ± 158.72 2711.02 ± 1299.64

improve over 50 epochs. Model instances were created and
trained until for every model an instance was found yielding
an MSEP (G
Dt ) value below 1000 for the stresses.

3.3 Results

The calibrated models WWsym, WWdir and PPdir are now
compared based on the stress error MSEP . Hereby, for every
single simulation mode the MSEP is computed, and its aver-
age and standard deviation with respect to G are calculated.
As shown in Table 3, the hyperelastic model WWsym yields,
of course, the same value for MSEP for every Q ∈ G and
zero standard deviation with respect to G, since it fulfills
the material symmetry by construction. Based on the cho-
sen training settings,WWsym yields, however, approximately
twice the MSEP compared to its direct alternativeWWdir for
the deformation modes of the calibration dataset Dc. The
elastic direct model PPdir yields the best quantitative results
in terms of MSEP with respect to the modes in Dc, but has
the highest standard deviations for Q ∈ G.

After comparing the errors w.r.t. the calibration modes
in Dc, the generalization qualities of the different models,
i.e., the ability of a model to predict data it has not seen yet
in training, is assessed using the three test modes. The first
two test modes are essentially (non-equi-) biaxial deforma-
tions,where both axes are experiencingdifferent strains.Both
modes lead to similar results, as can be seen in the biaxial-0.5
and biaxial-0.33 rows in Table 3. It should be noted that the
first model tends to maintain the same MSEP as in the train-
ing modes, whereas the other two models are giving higher
MSEP . Lastly, not only different tension/compression strains
are applied to the models, but also a scenario, where ten-
sion/compression is combined with shear strains as depicted
by shear-combined. Here, the generalization abilities of the
models can be seen even more clearly. Row shear-combined
in Table 3 shows that Wsym and Wdir maintain somewhat
accurate predictions, but Pdir shows a much higher MSEP .
These observations suggest that the generalization abilities of
the hyperelastic model including the symmetrization Wsym

are slightly better than without in Wdir, while the elastic,
stress-basedmodelPdir generalizesmuchworse, though pro-
viding far more accurate results on the training data.

These findings can be confirmed in Fig. 7, which shows
that the Pdirmodel performs better on the data used for train-
ing. In this context, it should be highlighted that the data
augmentation is actually crucial for the success of the sleeker
models, as can be seen in comparison between Fig. 8, where
the fully calibrated models are shown, and Fig. 9, where the
models trained with the non-augmented data used for cali-
bration of Wsym are shown. The comparison demonstrates
the deterioration of the prediction quality w.r.t. rotations for
theWdir and Pdirmodels when the material symmetry is not
part of the calibration data, i.e., when the calibration only
uses Dc instead of G
Dc.

When looking at the generalization abilities of themodels,
the stress model Pdir (trained again with data augmenta-
tion) still delivers accurate predictions of the test data for
the shear-combined deformation mode shown in Fig. 10
(though not as accurate as for the training data), its much
worse accuracy w.r.t. symmetry rotations can be seen in Fig.
11. This explains the large standard deviation for Pdir in
Table 3 when considering the shear-combined scenario. Fur-
thermore, the visualizations indicate the good generalization
properties of theWsym andWdir models and also show that
the direct hyperelastic model maintains reasonable accuracy
w.r.t. material symmetry.

3.3.1 Performance aspects

Besides the quality of their fit of the microstructure simula-
tions, also the performance of the ANN-based constitutive
models should be considered when choosing a network
for later use in a macroscale FE computation. Therefore,
a comparison of the execution times of the three models
Wsym,Wdir, and Pdir is conducted. For this purpose, all
threemodels are build inTensorFlow and a number of ran-
domdeformation gradients F is used as input for the network.
In Table 4, the number of deformation gradients F samples
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Fig. 7 Comparison of unit cell simulations (continuous lines) and ANN models (dashed lines) for uniaxial deformation

Fig. 8 Comparison of unit cell simulations (continuous lines) and ANN models with data augmentation (dashed lines) for uniaxial deformation
with a rotation Q ∈ G of 120◦ around the [1, 1, 1]T -axis applied to F

Fig. 9 Comparison of unit cell simulations (continuous lines) and ANNmodels without data augmentation (dashed lines) for uniaxial deformation
with a rotation Q ∈ G of 120◦ around the [1, 1, 1]T -axis applied to F
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Fig. 10 Comparison of unit cell simulations (continuous lines) and ANN models (dashed lines) for shear-combined deformation

Fig. 11 Comparison of unit cell simulations (continuous lines) and ANN models (dashed lines) for shear-combined deformation with a rotation
Q ∈ G of 270◦ around the [0, 0, 1]T -axis applied to F

the model has to evaluate is shown in the first column. In the
other columns, the corresponding evaluation time eachmodel
needed is shownas the average of 100 executions. The sample
sizes are doubled as long as the system is able to run the com-
putation. Generally, the times for eachmodel remain roughly
constant until a certain number of samples is reached, since
evaluations can be performed in parallel by theGPU. Further-
more, it can be seen that theWsymmodel is about one order
of magnitude slower compared to the Wdir model, though
the architecture is slightly smaller, see Table 2, which is due
to the symmetry group transformations involved, compare
(25). Modelling the stresses directly through the Pdir model
results in a minor speed-up, as it reduced the time needed by
the hyperelastic potential modelWdir by about a third, which
probably stems from the additional automatic differentiation
required for obtaining P = ∂W/∂F for the potential-based,
hyperelastic models. Considering that the stress model has

the worst generalization abilities compared toWdir and that
Wsym is an order ofmagnitude slower compared to the direct
model, theWdir model seems the most reasonable choice to
use in production.

For comparison, the time needed to compute the response
of one randomly perturbed RUC is—depending on the pre-
scribed deformation F—around 45 s. So even in the case that
one singular perturbation is sufficient, the constitutive model
evaluations are faster by a factor of about 250 (for Wsym)
up to 4600 (for Wdir). Since multiple runs with different
perturbations are necessary in order to minimize the para-
sitic stresses, as well as due to the fact that parallelization is
possible for the models, these factors merely form the lower
bound for the speedup. Thus, a sequential multiscale simu-
lation using an ANN-based constitutive model, which will
be demonstrated in the following Section, can be expected
to show a similar speed-up compared to a concurrent FE2

multiscale approach.
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Table 4 Evaluation timings for different models (average time of 100
evaluations of the given number of F samples)

samples tWsym tWdir tPdir
tWsym
tWdir

tWdir
tPdir

1 179.09 ms 9.83 ms 6.15 ms 18.2 1.6

2 181.23 ms 10.08 ms 5.98 ms 18.0 1.7

4 147.89 ms 9.49 ms 6.04 ms 15.6 1.6

8 143.44 ms 9.38 ms 5.98 ms 15.3 1.6

16 147.70 ms 9.38 ms 5.94 ms 15.7 1.6

32 149.50 ms 9.36 ms 5.97 ms 16.0 1.6

64 147.77 ms 9.36 ms 5.99 ms 15.8 1.6

128 151.38 ms 9.42 ms 5.96 ms 16.1 1.6

256 150.21 ms 9.70 ms 5.95 ms 15.5 1.6

512 150.75 ms 9.50 ms 6.02 ms 15.9 1.6

1024 142.69 ms 9.45 ms 6.02 ms 15.1 1.6

2048 153.13 ms 9.63 ms 6.13 ms 15.9 1.6

4096 152.13 ms 9.72 ms 6.23 ms 15.7 1.6

8192 177.73 ms 10.79 ms 6.65 ms 16.5 1.6

16384 177.76 ms 10.49 ms 6.77 ms 16.9 1.6

32768 180.06 ms 11.89 ms 7.38 ms 15.1 1.6

65536 180.75 ms 17.88 ms 11.09 ms 10.1 1.6

131072 231.01 ms 23.50 ms 16.96 ms 9.8 1.4

262144 430.97 ms 43.34 ms 29.47 ms 9.9 1.5

4 Macroscale simulation and verification

4.1 Nonlinear FEMwith ANN-basedmaterial models

For the sequential multiscale simulation of elastic beam lat-
tices, the structures are now macroscopically modelled as
hyperelastic continua, which are governed by the weak form:

∫

Ω

δŴ (E(u)) dV =
∫

Ω

δu · f dV +
∫

Γn

δu · g dS, (36)

where Ω ⊂ R
3 is the domain occupied by the microstruc-

tured continuum, u : Ω → R
3 the sought displacement

conforming to the Dirichlet boundary condition u = ū on
Γd ⊂ ∂Ω , f : Ω → R

3 the internal body forces, and
g : Γn ⊂ ∂Ω → R

3 the traction forces applied as Neumann
boundary conditions. The variation of the strain energy can
be further expressed as:

δŴ = δE : ∂Ŵ

∂E
= δE : S(E) = ∇δu : P(F)

= δF : P(F) = δF : ∂W

∂F
= δW ,

(37)

compare (23) and (24). Here, the effective behavior of lat-
tice unit cells is incorporated in the formulation through
the homogenized constitutive models, i.e., the ANN-based

potentials WWsym and WWdir, as introduced and trained
above.

The finite element discretization of this nonlinearmechan-
ical problem is then implemented in the open-source high
performancemultiphysicsfinite element softwareNGsolve,
version 6.2.2102 [66]. NGsolve provides a convenient
implementation of variational models, which is here used
with the ANN-based potentials WWsym and WWdir. For this
purpose, the weights and biases of the trained networks are
exported from TensorFlow and all operations for their
evaluation, as well as further derivations for linearization,
are taken care of by NGsolve.

4.2 Numerical results and verification

For the application and verification of the multiscale imple-
mentations, a cube of size 0.1 × 0.1 × 0.1 m3 with BCC
lattice microstructure (with aspect ratio a = 0.1) is investi-
gated. The lattice cube is subject to a clamped stretch, i.e., the
left and right surface are completely fixed and both surfaces
are forced to part from each other usingDirichlet-BCs. In this
scenario, no external forces are present, i.e., f = 0, g = 0.
The deformation is characterized by the parameter λ, which
describes the incrementally applied strain on the right sur-
face as a fraction of the position of the right side, whilst all
other displacements on the sides are set to be zero:

u|Γle f t = 0, u|Γright = (λX1, 0, 0)
T , (38)

with Γle f t = {X1 = 0} and Γright = {X1 = 0.1 m}.

4.2.1 Convergence study

To verify the implementation with the ANN-based poten-
tials, first a finite element convergence study is carried out.
For this purpose, tetrahedron meshes of degree 1, 2, and
3 are constructed and subsequently refined. The simula-
tions were then executed up to λ = 0.1 using the Wdir
model. Figure 12 shows the resulting total strain energies
�(u) = 1

2

∫
Ω
Ŵ (E(u)) dV at λ = 0.1 plotted against

the number of elements in the refined meshes. The lines
represent the different element degrees, i.e., the degree 1 rep-
resents linear tetrahedrons, 2 quadratic, and 3 cubic. It can be
observed that all element formulations converge with higher
element count and that the accuracy and speed of conver-
gence increases with degree. This behavior is, of course, to
be expected and simply confirms that the constitutive models
and their linearizations must be correctly implemented in the
FE context. When considering the performance apart from
the pure stability, the solutions that seem most promising are
the quadratic tet with 596 elements, resulting in an energy of
30.4 mJ and the cubic tet with 122 elements, resulting in an
energy of 30.4 mJ as well. Compared to the minimal energy
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Fig. 12 Convergence study for order elevation andmesh refinement for
the clamped stretch test at λ = 0.1

the computations showed of 30.1 mJ, this is an error of about
1%, which seems acceptable for the following further evalu-
ations.

4.2.2 Comparison with fully simulated beam lattices

After having verified that the homogenized constitutive
models are suitable for FE calculations, it is to be verified
whether the effective models and sequential multiscale sim-
ulation accurately describe the behavior of beam lattices. For
this purpose, the same setup as described above with a lat-
tice cube subject to clamped tension was implemented using
lattices of 5 × 5 × 5 and 7 × 7 × 7 BCC RUCs.

In order to assess the reasonable agreement of the homog-
enized model and the fully resolved, direct lattice simulation
with beam elements, the simulation just as described above
is conducted for tension with λ up to +0.25 and for com-
pression with λ up to −0.15, where possible. Not all models
show good convergence in compressive scenarios as is dis-
cussed in the next paragraph. The resulting strain energies,
as well as the resulting reaction forces on Γright , are plotted
over the applied strain λ in Fig. 13. For the fully-resolved
lattices, we executed a maximum of 5 simulations with ran-
domperturbations for both compression and tension.Upuntil
loss of convergence, these simulations are indistinguishable
in terms of their energy and force values and thus only the
oneswith the highest attained strains are plotted. Even though
only relatively few unit cells are used in order to reduce the
computational effort of the fully resolved simulations, i.e., no
proper separation of scales applies, the homogenized models

Fig. 13 Comparison of internal energy (top) and response force (bot-
tom) over applied strain λ for different scenarios both homogenized (FE
Wdir, FEWsym) and full-scale (5 × 5 × 5, 7 × 7 × 7)

result in strain energies and forces close to those of the full-
scale simulations. Especially the strain energy plot shows
good agreement of the homogenized models with the full
scale simulation. The forces of the different simulations also
agree reasonablywell; especially on the compression side the
buckling effect in the homogenized models is clearly visible
in the flattening of the curve. Whilst being not as sharp as
on the full-scale simulation, which also applies to the data fit
itself as shown in Fig. 7, this nevertheless shows the capa-
bility of the generated models and the multiscale method to
predict the buckling-dominated behavior of metamaterials
fairly well. Furthermore, the results from the tension sim-
ulations (at λ = 0.25) are visualized in Fig. 14, while the
results form the compression simulations (at λ = −0.05) are
shown in Fig. 15. Also here, a good visual agreement of the
deformed shapes can be observed.

It should also be noted that the homogenized models are
numerically more stable compared to the full-scale simula-
tions, which also require perturbations in order to resolve the
onset of buckling, resulting in the ability to compute higher
compressive strains. However, in compression, at some point
convergence issues also occur for the continuum FEM with
Wdir (at λ ≈ −0.09) and Wsym (at λ ≈ −0.14), which can
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Fig. 14 Visualization of the clamped stretch of the lattice cube at λ = 0.25 with the Wdir multiscale continuum model as greyed-out body, the
5 × 5 × 5 lattice in blue and the 7 × 7 × 7 lattice in red. (Color figure online)

Fig. 15 Visualization of the clamped compression of the lattice cube at λ = −0.05 with theWdir multiscale continuum model as greyed-out body,
the 5 × 5 × 5 lattice in blue and the 7 × 7 × 7 lattice in red. (Color figure online)

be seen from the prematurely terminated compression curves
in Fig. 13. This might probably be related to loss of ellipticity
and a lack of uniqueness of the solutions obtainable from the
ANN-based models, which could potentially be resolved by
incorporating polyconvexity conditions [67] into the models
in future work. Despite that, the results demonstrate the abil-
ity of the obtained models to predict the behaviour of the
metamaterials under large compressive strains, where the
effect of the buckling is clearly visible in the flattening of
the curves. Even though the ANN-based models also exhibit

convergence issues, they are still much faster andmore stable
than direct numerical simulations.

5 Conclusions

A sequential nonlinear multiscale method for the simulation
of elastic beam lattices was developed in this work, showing
that metamaterials subject to large deformations and instabil-
ities can be efficiently and accurately described using highly
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flexible, data-driven effective constitutivemodels formulated
upon artificial neural networks.

For the generation of calibration data for effective con-
stitutive models, a stochastic perturbation approach for
nonlinear post-buckling analysis of RUCs has been intro-
duced, which does not require preceding eigenmode analysis
and mode selection. By considering multiple instances and
averaging, parasitic stress components of the effective stress-
strain responses could be significantly reduced compared to
an eigenmode-based reference approach with a single pertur-
bation.Using thismethod, homogenized energy densities and
stress tensors of the BCC unit cell were obtained for various
prescribed deformation modes (uniaxial tension, volumetric
tension, shear, etc.).

The generated data was then used to train and evaluate
three different ANN-based constitutive models: (1)Wsym, a
hyperelastic model incorporating the finite symmetry group
of the RUC, (2) Wdir, a hyperelastic model trained to show
anisotropic behavior through data augmentation, and (3)
Pdir, an elastic, stress-based model also trained through data
augmentation. By comparing the resultingMSE of the Piola-
Kirchhoff stress tensor, it could be observed that the stress
model Pdir, whilst possessing superior qualities on the train-
ing dataset, showed inferior generalization abilities when
evaluated on the validation dataset. In contrast, the hyper-
elastic models Wsym and Wdir showed good generalization
abilitieswith only slightly increased errorswith respect to the
validation dataset. In terms of computational performance,
the direct hyperelastic model Wdir evaluates much faster
than the model Wsym due the computational expenses of
the Wsym model through the group symmetrization. This
performance advantage of the Wdir model puts up with a
comparably small loss in prediction quality when reproduc-
ing the anisotropy of the cell, aswell as in a neglectable loss in
the generalization ability on the test data. This suggests that
hyperelastic models should be preferred and that approxi-
mation of the material symmetry through data augmentation
is favorable if computational performance is prioritized over
accuracy and physical exactness of the material model.

Thehomogenized, anisotropic, hyperelasticmaterialmod-
els were then implemented into a nonlinear FE code for
sequential multiscale simulation and delivered good results
when compared to full-scale simulations ofBCC lattice struc-
tures. Besides the advantages of computational effort and
therefore time-savings, the homogenized continuum mod-
els also prevail in the aspect of complexity. The convergence
behavior of the continuummodels is not dependent on pertur-
bations for post-buckling analysis. Further, it is less intrusive
and much easier to implement a model based on the hyper-
elastic energy density compared to implementing a model
based on the internal structure of a lattice and add corre-
sponding lattice perturbations throughout the macroscopic
structure. Therefore, the multiscale approach speeds up the

development process in two ways: the generation of the sys-
tem to be simulated and the computation of the simulation
itself.

The presented sequential multiscale framework based
on anisotropic (hyper)elastic ANN-models could be read-
ily applied to the multiscale modeling of other beam lattice
RUCs, as well as other types of elastic microstructures, such
as (minimal) surface-based foams or composites. In this con-
text, other symmetry groups and parametric microstructures
could be investigated, cf. [68], even with potentially varying
symmetries. Further, future work should be directed towards
including further desirable properties into the constitutive
formulations, such asmaterial stability, and extend the frame-
work towards thermodynamically consistent time-dependent
and inelastic modeling, which is particularly important for
applications of additively manufactured, polymeric lattices.
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