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Impact Behaviour of Auxetic Materials

® auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed
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Impact Behaviour of Auxetic Materials

® auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed
® promising capabilities for impact mitigation
® natural densification at the impact location
® higher shear wave speed
® better involvement of lateral material
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Impact Behaviour of Auxetic Materials

® auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed
® promising capabilities for impact mitigation
® natural densification at the impact location
® higher shear wave speed
® better involvement of lateral material

® auxetic materials hardly found in nature
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non-auxetic and auxetic rods under tension non-auxetic and auxetic material under

(Cho, Seo, and Kim 2019) impact (Kolken and Zadpoor 2017)
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Design of Auxetic Materials

® targeted design possible with lattice structures
® two main working mechanisms to create the auxetic effect
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Design of Auxetic Materials

® targeted design possible with lattice structures
® two main working mechanisms to create the auxetic effect
e folding structures (potentially strong auxeticity)
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Design of Auxetic Materials

® targeted design possible with lattice structures

® two main working mechanisms to create the auxetic effect
e folding structures (potentially strong auxeticity)
® rotating structures (limited auxeticity)
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Design of Auxetic Materials

® targeted design possible with lattice structures

® two main working mechanisms to create the auxetic effect
e folding structures (potentially strong auxeticity)
® rotating structures (limited auxeticity)

® goal of this investigation:
elastic comparison of different architectures at high strains and strain rates
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Lattice Simulation

® architectures defined by assembly of rods
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Lattice Simulation

® architectures defined by assembly of rods

® rods represented as geometrically nonlinear
Timoshenko Beams

® FE-Implementation in JEM/JIVE!
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Lattice Simulation

architectures defined by assembly of rods >

® rods represented as geometrically nonlinear
Timoshenko Beams

® FE-Implementation in JEM/JIVE!

e for first investigation purely elastic material
behaviour
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Lattice Simulation

® architectures defined by assembly of rods >

® rods represented as geometrically nonlinear
Timoshenko Beams

® FE-Implementation in JEM/JIVE!

e for first investigation purely elastic material
behaviour

NN

® time marching using a two step semi-explicit
scheme

® 2D static, 2D dynamic, and 3D static
verification successful

® promising comparison with first experiments
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Setup of Investigation

® investigation of six different architectures tuned to two sets of equal linear
properties
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Setup of Investigation

® investigation of six different architectures tuned to two sets of equal linear
properties

* Young's modulus of 20 kPa and density of 1570 kg m3
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Setup of Investigation

® investigation of six different architectures tuned to two sets of equal linear
properties
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Differences in Density

Stress
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re-entrant honeycomb
double arrowhead
chiral structure
antichiral structure

re-entrant honeycomb
(rotated 90°)

double arrowhead
(rotated 90°)

linear

stress-strain curves for different architectures at different densities

® denser structures preserve existing properties better
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Differences in Density
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—— antichiral structure

re-entrant honeycomb
(rotated 90°)

double arrowhead
(rotated 90°)
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stress-strain curves for different architectures at different densities

® denser structures preserve existing properties better
® denser structures derive larger part of their stiffness from
bending
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Effects of Vertical Beams
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——————— linear comparison
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stress-strain curves for different architectures

® structures with vertical beams exhibit stiffer behavior

3
TUDelft 71



Effects of Vertical Beams
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® structures with vertical beams exhibit stiffer behavior

® buckling in those structures results in a rapid decline in
stiffness
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Large Strain Rate Effects
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different impact speeds

® higher strain rates lead to higher resistance at the immediate impact
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Large Strain Rate Effects

re-entrant honeycomb double arrowhead chiral structure
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different impact speeds on different architectures

® higher strain rates lead to higher resistance at the immediate impact
® most cases: constant plateau stress

® chiral and rotated re-entrant show dependency on velocity
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Effect of Surrounding Material
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Effect of Surrounding Material




Effect of Surrounding Material
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® in most cases little difference between amount of surrounding material
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Effect of Surrounding Material
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® in most cases little difference between amount of surrounding material

® no clear dependency of surrounding material effect on strain rate
® |ocal impact offers more resistance compared to global impact
® impact energy dispersed laterally
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Towards 3D Auxetic Structures

® thus far only 2D structures investigated

® 3D structures could amplify effects of
surrounding material
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Towards 3D Auxetic Structures

thus far only 2D structures investigated

3D structures could amplify effects of
surrounding material

3D structures are by default less dense
different strategies to move from 2D to 3D
® orthogonal connection as trivial solution for
most architectures
® hexagonal or trigonal assembly is transversely
isotropic in linear regime
® moving to 3D not trivial for (anti)chiral
structures

z
TUDelft




Towards 3D Auxetic Structures

® thus far only 2D structures investigated

® 3D structures could amplify effects of
surrounding material

® 3D structures are by default less dense
e different strategies to move from 2D to 3D

® orthogonal connection as trivial solution for
most architectures

® hexagonal or trigonal assembly is transversely
isotropic in linear regime

® moving to 3D not trivial for (anti)chiral
structures

® nonlinear investigations pending
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Conclusion

® FE-Toolbox to analyse lattice structures set up
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Conclusion

® FE-Toolbox to analyse lattice structures set up

® Analysis of nonlinear and dynamic properties of
different auxetic architectures conducted

® otherwise equal, but denser structures show
beneficial properties even in static behaviour

® vertically folding structures stiffen initially
later buckling results in sharp decrease of
stiffness

® it is possible to generate an artificial strain
rate dependency

® auxeticity demonstrates benefits when impact
is surrounded with more material
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Thank you!
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