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Impact Behaviour of Auxetic Materials
• auxetic materials are materials with a negative Poisson’s ratio

• materials that contract laterally when compressed

• promising capabilities for impact mitigation

• natural densification at the impact location
• higher shear wave speed
• better involvement of lateral material

• auxetic materials hardly found in nature

non-auxetic and auxetic rods under tension
(Cho, Seo, and Kim 2019)

non-auxetic and auxetic material under
impact (Kolken and Zadpoor 2017)
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Design of Auxetic Materials
• targeted design possible with lattice structures
• two main working mechanisms to create the auxetic effect

• folding structures (potentially strong auxeticity)
• rotating structures (limited auxeticity)

• goal of this investigation:
elastic comparison of different architectures at high strains and strain rates

𝑏

𝑙

𝛼

re-entrant
honeycomb

ℎ

𝛼

𝛽

double arrowhead

𝑏

𝛼

chiral structure

2𝑏

𝛼

anti-chiral
structure

3 / 11



Design of Auxetic Materials
• targeted design possible with lattice structures
• two main working mechanisms to create the auxetic effect

• folding structures (potentially strong auxeticity)

• rotating structures (limited auxeticity)
• goal of this investigation:

elastic comparison of different architectures at high strains and strain rates

𝑏

𝑙

𝛼

re-entrant
honeycomb

ℎ

𝛼

𝛽

double arrowhead

𝑏

𝛼

chiral structure

2𝑏

𝛼

anti-chiral
structure

3 / 11



Design of Auxetic Materials
• targeted design possible with lattice structures
• two main working mechanisms to create the auxetic effect

• folding structures (potentially strong auxeticity)
• rotating structures (limited auxeticity)

• goal of this investigation:
elastic comparison of different architectures at high strains and strain rates

𝑏

𝑙

𝛼

re-entrant
honeycomb

ℎ

𝛼

𝛽

double arrowhead

𝑏

𝛼

chiral structure

2𝑏

𝛼

anti-chiral
structure

3 / 11



Design of Auxetic Materials
• targeted design possible with lattice structures
• two main working mechanisms to create the auxetic effect

• folding structures (potentially strong auxeticity)
• rotating structures (limited auxeticity)

• goal of this investigation:
elastic comparison of different architectures at high strains and strain rates

𝑏

𝑙

𝛼

re-entrant
honeycomb

ℎ

𝛼

𝛽

double arrowhead

𝑏

𝛼

chiral structure

2𝑏

𝛼

anti-chiral
structure

3 / 11



Lattice Simulation
• architectures defined by assembly of rods

• rods represented as geometrically nonlinear
Timoshenko Beams

• FE-Implementation in JEM/JIVE1

• for first investigation purely elastic material
behaviour

• time marching using a two step semi-explicit
scheme

• 2D static, 2D dynamic, and 3D static
verification successful

• promising comparison with first experiments
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Setup of Investigation
• investigation of six different architectures tuned to two sets of equal linear

properties

• Young’s modulus of 20 kPa and density of 1570 kg m−3

• Young’s modulus of 20 kPa and density of 785 kg m−3
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Differences in Density
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stress-strain curves for different architectures at different densities

• denser structures preserve existing properties better

• denser structures derive larger part of their stiffness from
bending
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Effects of Vertical Beams
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stress-strain curves for different architectures

• structures with vertical beams exhibit stiffer behavior

• buckling in those structures results in a rapid decline in
stiffness
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Large Strain Rate Effects
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different impact speeds

• higher strain rates lead to higher resistance at the immediate impact

• most cases: constant plateau stress
• chiral and rotated re-entrant show dependency on velocity
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Effect of Surrounding Material

• in most cases little difference between amount of surrounding material
• no clear dependency of surrounding material effect on strain rate
• local impact offers more resistance compared to global impact

• impact energy dispersed laterally
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Towards 3D Auxetic Structures

• thus far only 2D structures investigated
• 3D structures could amplify effects of

surrounding material

• 3D structures are by default less dense
• different strategies to move from 2D to 3D

• orthogonal connection as trivial solution for
most architectures

• hexagonal or trigonal assembly is transversely
isotropic in linear regime

• moving to 3D not trivial for (anti)chiral
structures

• nonlinear investigations pending
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Conclusion

• FE-Toolbox to analyse lattice structures set up

• Analysis of nonlinear and dynamic properties of
different auxetic architectures conducted

• otherwise equal, but denser structures show
beneficial properties even in static behaviour

• vertically folding structures stiffen initially
later buckling results in sharp decrease of
stiffness

• it is possible to generate an artificial strain
rate dependency

• auxeticity demonstrates benefits when impact
is surrounded with more material
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Thank you!
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