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Impact Behaviour of Auxetic Materials

® auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed

non-auxetic and auxetic materials
(Lim 2015)
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non-auxetic and auxetic materials non-auxetic and auxetic material under
(Lim 2015) impact (Kolken and Zadpoor 2017)
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Impact Behaviour of Auxetic Materials

® auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed

® promising capabilities for impact mitigation
® natural densification at the impact location
® better involvement of lateral material

® auxetic materials hardly found in nature

® assumptions don't take material architecture into account
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non-auxetic and auxetic materials non-auxetic and auxetic material under
(Lim 2015) impact (Kolken and Zadpoor 2017)
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Architecture Selection

e four auxetic and one non-auxetic designs
investigated
® two different auxetic mechanisms
® materials without rotational similitude also
90° rotated
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Architecture Selection

e four auxetic and one non-auxetic designs
investigated
® two different auxetic mechanisms
® materials without rotational similitude also
90° rotated

® geometric parameters and beam thickness as
variables

® all structures tuned to
* = 300 MPa
=785kgm3
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Lattice Simulation

e architectures defined as assembly of rods
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Lattice Simulation

e architectures defined as assembly of rods

® rods represented as geometrically nonlinear
Timoshenko beams

® FE-implementation of Simo-Reissner-elements
in JEM/JIVE!

1C++ FE-Toolkit
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Lattice Simulation

® architectures defined as assembly of rods

® rods represented as geometrically nonlinear
Timoshenko beams

® FE-implementation of Simo-Reissner-elements
in JEM/JIVE!

® purely elastic material behavior

® no contact detection

1C4++ FE-Toolkit
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Lattice Simulation

® architectures defined as assembly of rods

® rods represented as geometrically nonlinear
Timoshenko beams

® FE-implementation of Simo-Reissner-elements
in JEM/JIVE!

® purely elastic material behavior
® no contact detection
® time marching with predictor-corrector scheme

® time step adaptivity using a Milne-device

1C4++ FE-Toolkit
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Change in E, due to Loading-Direction of Beams
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Change in E, due to Loading-Direction of Beams
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Influence
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Influence of Geometry on Poisson’s Ratio
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Pressure Waves Dominant over Shear Waves
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Setup for Impact Simulation

® impact simulation conducted with patches of ~ 10 x 10 unit cells

l«—~ 10 cells—>
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Setup for Impact Simulation

® impact simulation conducted with patches of ~ 10 x 10 unit cells
o different compression speeds H

e different localization ratios r;

H
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Setup for Impact Simulation

® impact simulation conducted with patches of ~ 10 x 10 unit cells
o different compression speeds H

e different localization ratios r;

* evaluating the specific energy absorption (SEA)
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No Benefit of Auxeticity in Moderate Localization
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Benefit arises upon Severe Localization & Higher Strain Rates
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Re-entrant Honeycomb performs better upon Severe Localization
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Re-entrant Honeycomb performs better upon Severe Localization
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Concluding Remarks

e Lattice materials as such do not follow linear
continuum assumptions

e Different architectures vary strongly in
deformation behavior
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Concluding Remarks

e Lattice materials as such do not follow linear
continuum assumptions

e Different architectures vary strongly in
deformation behavior

® Performance of lattices is dependent on the
localization and strain rate

® Auxeticity is not the simple solution for impact
protection
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Concluding Remarks

Lattice materials as such do not follow linear
continuum assumptions

Different architectures vary strongly in
deformation behavior

Performance of lattices is dependent on the
localization and strain rate

Auxeticity is not the simple solution for impact
protection

The development of material properties is more
important than the initial value







Uniaxial Compression
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Planar Compression
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Shear Deformation
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Speed Comparison
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Constrained Modulus
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