

Scaling the Hardening Behavior of Nonlinear Timoshenko Beams for the Design of Lattice Materials

GAMM – 94th Annual Meeting 2024

Til Gärtner^{ab} S.J. van den Boom^b J. Weerheim^a L.J. Sluys^a

a. Delft University of Technology

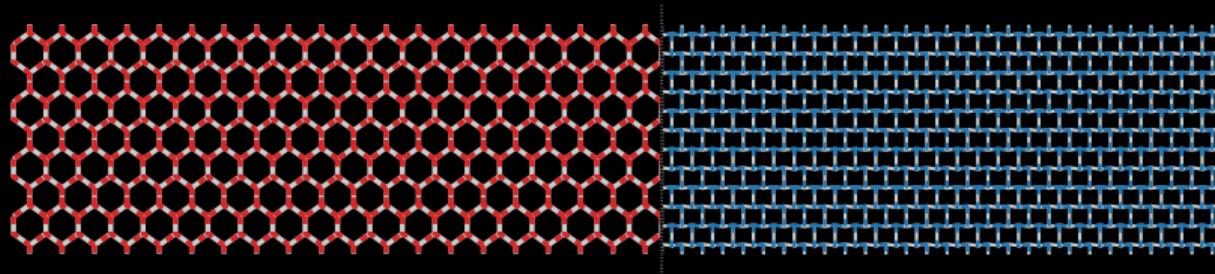
b. Netherlands Institute of Applied Scientific Research (TNO)

Metamaterial Architecture needs Accurate Beam Representation

- Mechanical metamaterials promise benefits for impact mitigation
- Harvesting the properties of the microstructure requires a good representation

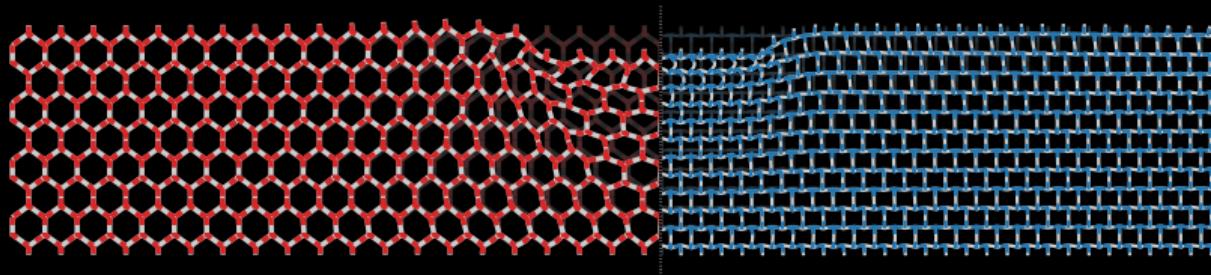
Metamaterial Architecture needs Accurate Beam Representation

- Mechanical metamaterials promise benefits for impact mitigation
- Harvesting the properties of the microstructure requires a good representation
- Lattice materials are a collection of beams



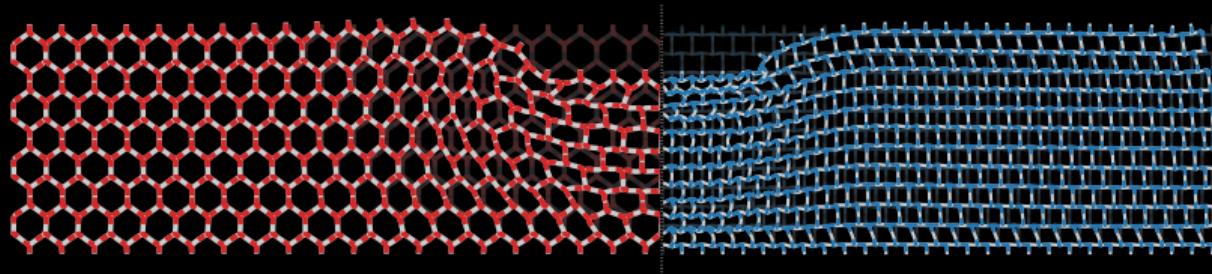
Metamaterial Architecture needs Accurate Beam Representation

- Mechanical metamaterials promise benefits for impact mitigation
- Harvesting the properties of the microstructure requires a good representation
- Lattice materials are a collection of beams
- Impact scenarios come with large deformations



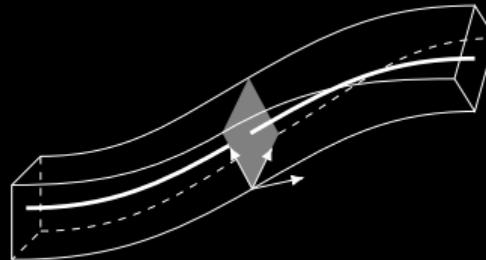
Metamaterial Architecture needs Accurate Beam Representation

- Mechanical metamaterials promise benefits for impact mitigation
- Harvesting the properties of the microstructure requires a good representation
- Lattice materials are a collection of beams
- Impact scenarios come with large deformations
- Designing architectures requires fitting material models for all scales



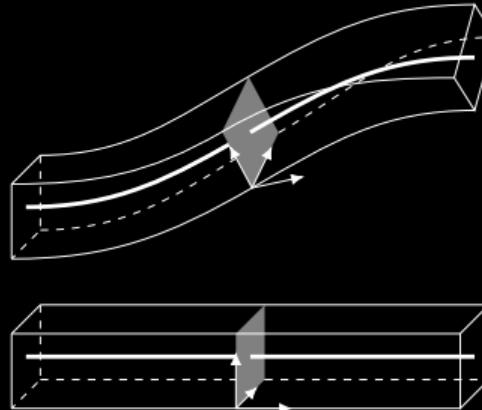
Scaling of plastic beam properties not fully explored

- Beams modelled as geometrically nonlinear Timoshenko beams



Scaling of plastic beam properties not fully explored

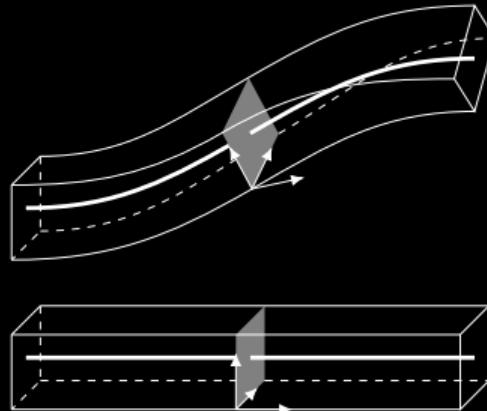
- Beams modelled as geometrically nonlinear Timoshenko beams
- Plasticity as proposed by Smriti et al. 2018; 2020



Smriti, Kumar, Großmann, and Steinmann *Mathematics and Mechanics of Solids* 24.3 (2018)
Smriti, Kumar, and Steinmann *International Journal for Numerical Methods in Engineering* 122.5 (2020)

Scaling of plastic beam properties not fully explored

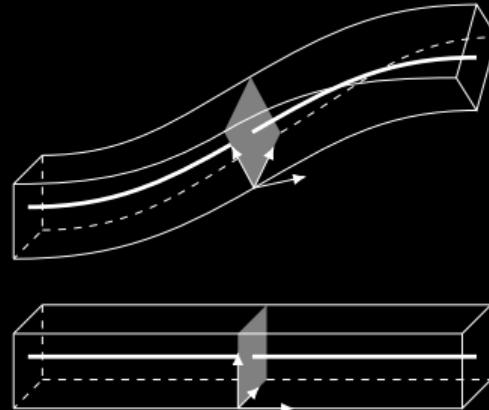
- Beams modelled as geometrically nonlinear Timoshenko beams
- Plasticity as proposed by Smriti et al. 2018; 2020
- Herrnböck, Kumar, and Steinmann 2021 determined the yield surface with geometric scaling



Herrnböck, Kumar, and Steinmann *Computational Mechanics* 67.3 (2021)

Scaling of plastic beam properties not fully explored

- Beams modelled as geometrically nonlinear Timoshenko beams
- Plasticity as proposed by Smriti et al. 2018; 2020
- Herrnböck, Kumar, and Steinmann 2021 determined the yield surface with geometric scaling
- Kinematic hardening is added by Herrnböck, Kumar, and Steinmann 2022
- The scaling of the hardening tensor is not fully explored



Herrnböck, Kumar, and Steinmann *Computational Mechanics* 71.1 (2022)

No Size Effects in Elastic Beams

- FE-Implementation of Simo-Reissner beam elements in JEM/JIVE
- Geometric scaling and meshing with GMSH

No Size Effects in Elastic Beams

- FE-Implementation of Simo-Reissner beam elements in JEM/JIVE
- Geometric scaling and meshing with GMSH
- Linear elasticity assumed on material level

$$\begin{bmatrix} n \\ m \end{bmatrix} = \mathbf{K} \begin{bmatrix} \varepsilon \\ \kappa \end{bmatrix}$$

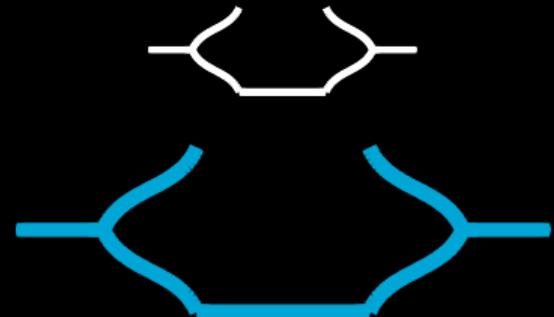
No Size Effects in Elastic Beams

- FE-Implementation of Simo-Reissner beam elements in JEM/JIVE
- Geometric scaling and meshing with GMSH
- Linear elasticity assumed on material level

$$\begin{bmatrix} n \\ m \end{bmatrix} = \mathbf{K} \begin{bmatrix} \varepsilon \\ \kappa \end{bmatrix}$$

- Scaling of elasticity implicitly with used stiffness matrix

$$\mathbf{K} = \text{diag} (GA_s, GA_s, EA, EI_1, EI_2, GJ)$$



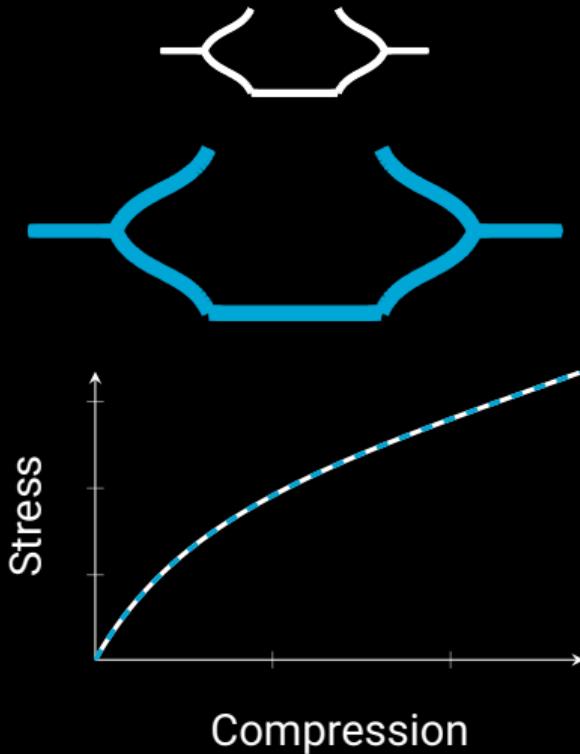
No Size Effects in Elastic Beams

- FE-Implementation of Simo-Reissner beam elements in JEM/JIVE
- Geometric scaling and meshing with GMSH
- Linear elasticity assumed on material level

$$\begin{bmatrix} n \\ m \end{bmatrix} = \mathbf{K} \begin{bmatrix} \varepsilon \\ \kappa \end{bmatrix}$$

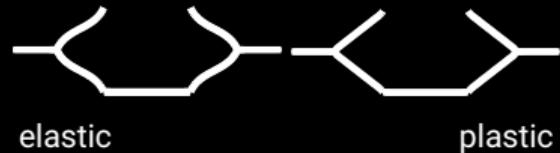
- Scaling of elasticity implicitly with used stiffness matrix

$$\mathbf{K} = \text{diag} (GA_s, GA_s, EA, EI_1, EI_2, GJ)$$



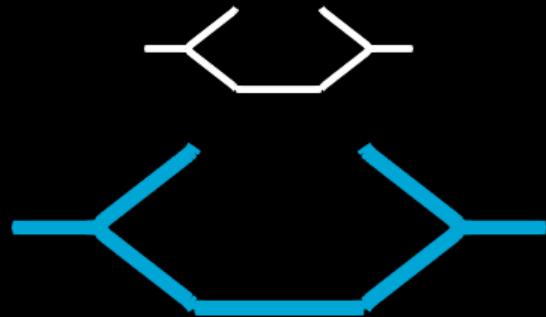
No Size Effects in Ideal Plastic Beams

- Plasticity modelled in the 6D space of the beam forces and moments
- Implementation using an explicit cutting-plane algorithm



No Size Effects in Ideal Plastic Beams

- Plasticity modelled in the 6D space of the beam forces and moments
- Implementation using an explicit cutting-plane algorithm
- Yield function and surface taken from Herrnböck, Kumar, and Steinmann 2021
- Scaling of the yield surface as reported there

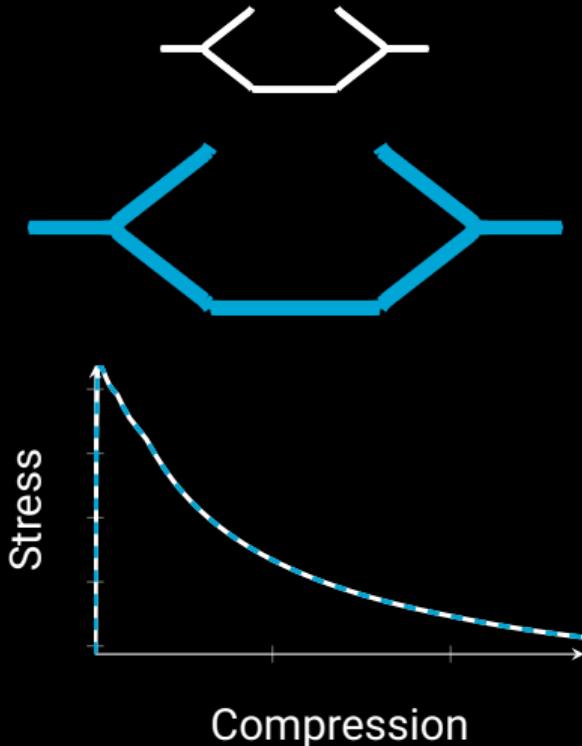


$$n_i^{y*} = \vartheta^2 n_i^y \quad \text{and} \quad m_i^{y*} = \vartheta^3 m_i^y$$

No Size Effects in Ideal Plastic Beams

- Plasticity modelled in the 6D space of the beam forces and moments
- Implementation using an explicit cutting-plane algorithm
- Yield function and surface taken from Herrnböck, Kumar, and Steinmann 2021
- Scaling of the yield surface as reported there

$$n_i^{y*} = \vartheta^2 n_i^y \quad \text{and} \quad m_i^{y*} = \vartheta^3 m_i^y$$



Size Effects in Hardening Plastic Beam Implementation

- Kinematic hardening with a hardening tensor H added as described by Herrnböck, Kumar, and Steinmann 2022

Size Effects in Hardening Plastic Beam Implementation

- Kinematic hardening with a hardening tensor H added as described by Herrnböck, Kumar, and Steinmann 2022
- Two options for scaling with hardening

entire surface: $(n_i^y - n_i^h)^\star = \vartheta^2(n_i^y - n_i^h)$ or

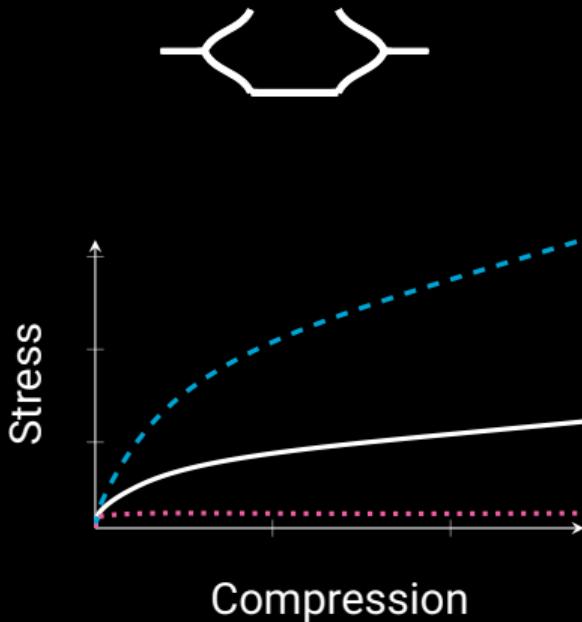
initial surface: $(n_i^y - n_i^h)^\star = \vartheta^2 n_i^y - n_i^h$

Size Effects in Hardening Plastic Beam Implementation

- Kinematic hardening with a hardening tensor H added as described by Herrnböck, Kumar, and Steinmann 2022
- Two options for scaling with hardening

entire surface: $(n_i^y - n_i^h)^\star = \vartheta^2(n_i^y - n_i^h)$ or

initial surface: $(n_i^y - n_i^h)^\star = \vartheta^2 n_i^y - n_i^h$

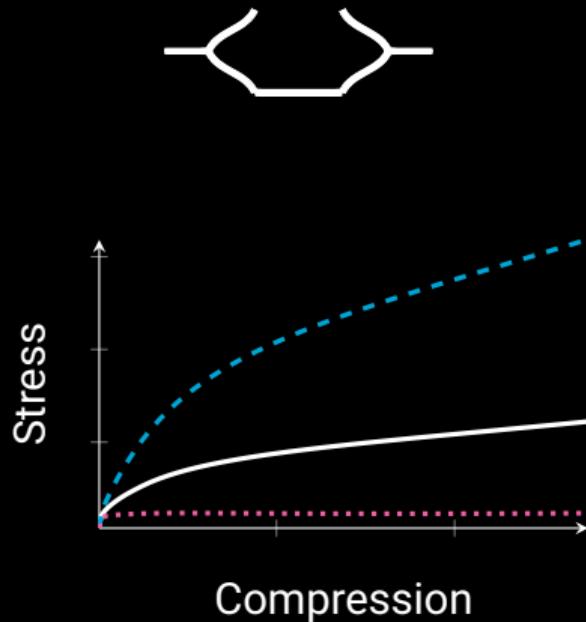


Size Effects in Hardening Plastic Beam Implementation

- Kinematic hardening with a hardening tensor H added as described by Herrnböck, Kumar, and Steinmann 2022
- Two options for scaling with hardening

entire surface: $(n_i^y - n_i^h)^\star = \vartheta^2(n_i^y - n_i^h)$ or

initial surface: $(n_i^y - n_i^h)^\star = \vartheta^2 n_i^y - n_i^h$



Scaling of the Hardening Tensor is dependent on the Yield Function

- Scaling of the hardening contribution in the yield surface determines scaling of the hardening tensor

Scaling of the Hardening Tensor is dependent on the Yield Function

- Scaling of the hardening contribution in the yield surface determines scaling of the hardening tensor
- For the two discussed options:

entire surface: $H^* = H\vartheta^{-2}$ or

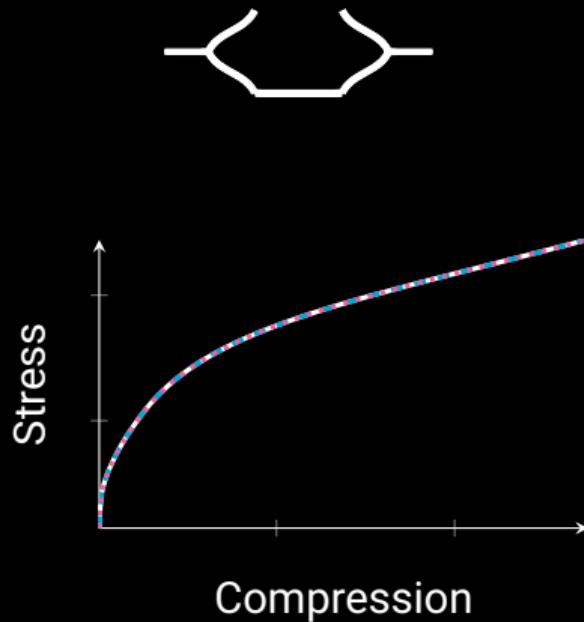
initial surface: $H^* = \begin{bmatrix} H_{\varepsilon\varepsilon}\vartheta^2 & H_{\varepsilon\kappa}\vartheta^3 \\ H_{\kappa\varepsilon}\vartheta^3 & H_{\kappa\kappa}\vartheta^4 \end{bmatrix}$

Scaling of the Hardening Tensor is dependent on the Yield Function

- Scaling of the hardening contribution in the yield surface determines scaling of the hardening tensor
- For the two discussed options:

entire surface: $H^* = H\vartheta^{-2}$ or

initial surface: $H^* = \begin{bmatrix} H_{\varepsilon\varepsilon}\vartheta^2 & H_{\varepsilon\kappa}\vartheta^3 \\ H_{\kappa\varepsilon}\vartheta^3 & H_{\kappa\kappa}\vartheta^4 \end{bmatrix}$

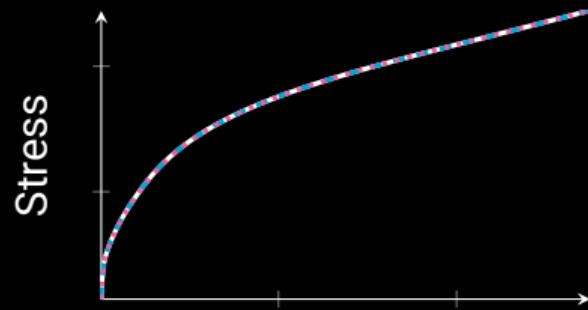


Scaling of the Hardening Tensor is dependent on the Yield Function

- Scaling of the hardening contribution in the yield surface determines scaling of the hardening tensor
- For the two discussed options:

entire surface: $H^* = H\vartheta^{-2}$ or

$$\text{initial surface: } H^* = \begin{bmatrix} H_{\varepsilon\varepsilon}\vartheta^2 & H_{\varepsilon\kappa}\vartheta^3 \\ H_{\kappa\varepsilon}\vartheta^3 & H_{\kappa\kappa}\vartheta^4 \end{bmatrix}$$

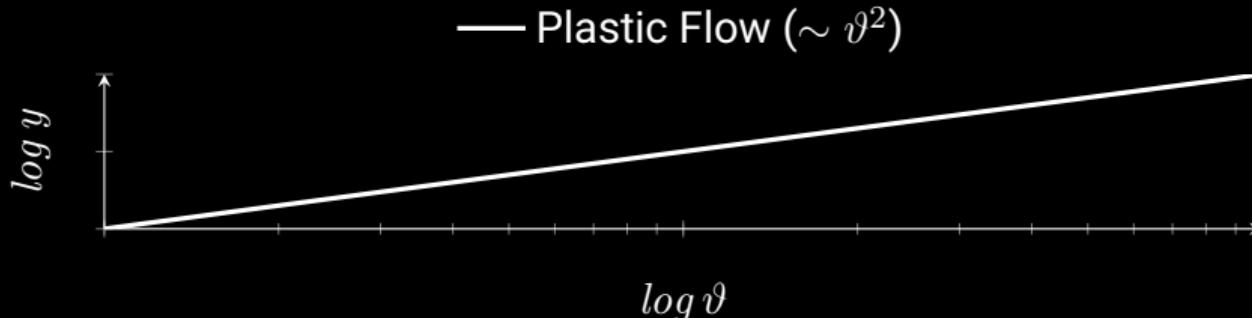


Compression

Motivation of the Scaling of the Hardening Tensor

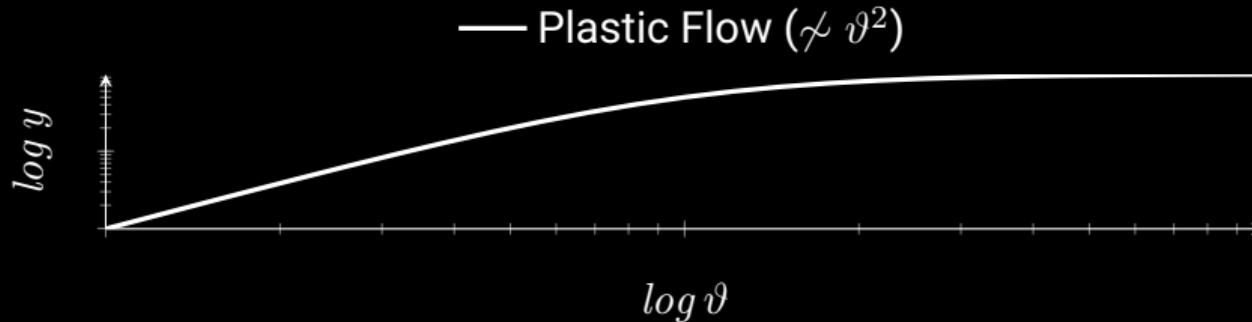
Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$
- Simple yield function $\Phi = \left| \frac{N}{N_y \vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$



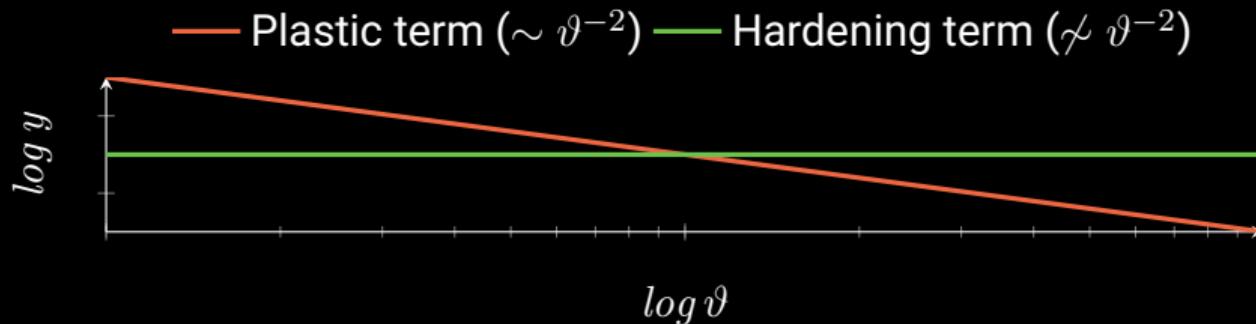
Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$ and $H = 10$
- Simple yield function $\Phi = \left| \frac{N}{(N_y - N_h)\vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$



Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$ and $H = 10$
- Simple yield function $\Phi = \left| \frac{N}{(N_y - N_h)\vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$

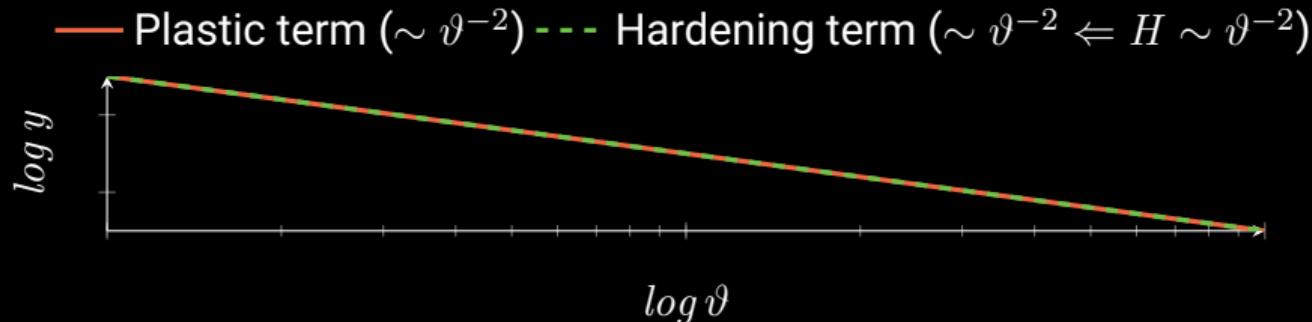


Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$ and $H = 10$
- Simple yield function $\Phi = \left| \frac{N}{(N_y - N_h)\vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$
- Hardening term is $\partial_{N_h} \Phi \cdot H \cdot \partial_{N_h} \Phi$
- The derivative $\partial_{N_h} \Phi$ does not scale with ϑ
- Thus the hardening tensor should scale with ϑ^{-2}

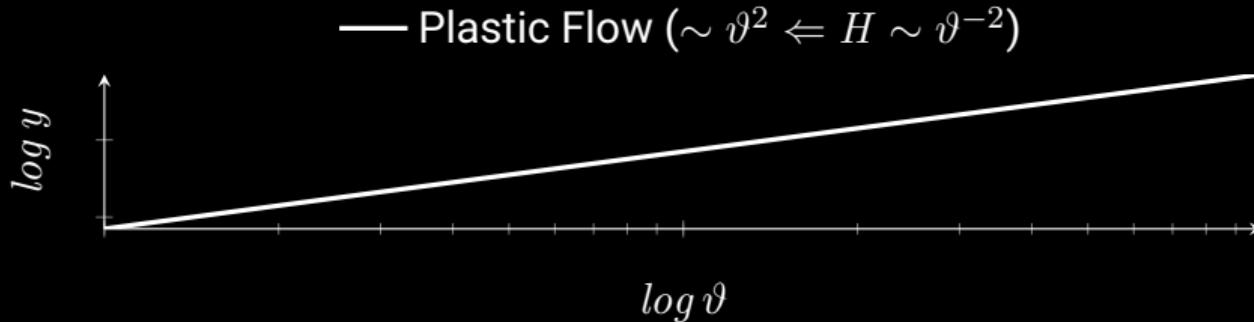
Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$ and $H = 10\vartheta^{-2}$
- Simple yield function $\Phi = \left| \frac{N}{(N_y - N_h)\vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$



Motivation of the Scaling of the Hardening Tensor

- Cantilever beam with a prescribed displacement at the tip $EA = 10$ and $H = 10\vartheta^{-2}$
- Simple yield function $\Phi = \left| \frac{N}{(N_y - N_h)\vartheta^2} \right| - 1$ and constant strain $\varepsilon = 0.11$

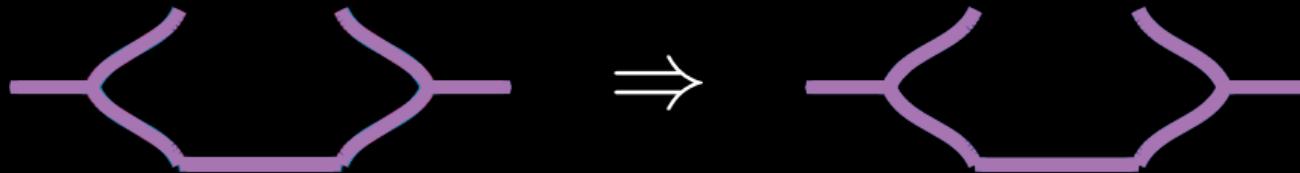


The Yield Function determines the Scaling of the Hardening

- The scaling of the hardening tensor can be derived from the yield surface

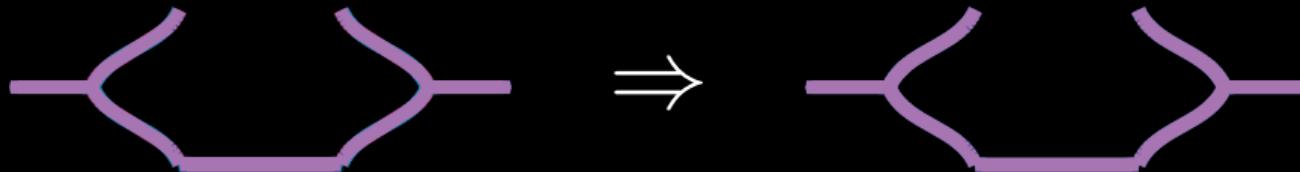
The Yield Function determines the Scaling of the Hardening

- The scaling of the hardening tensor can be derived from the yield surface
- Scaling the entire yield surface leads to scaling with the area inverse ϑ^{-2}
- Scaling the initial yield surface leads to scaling like the elastic stiffness



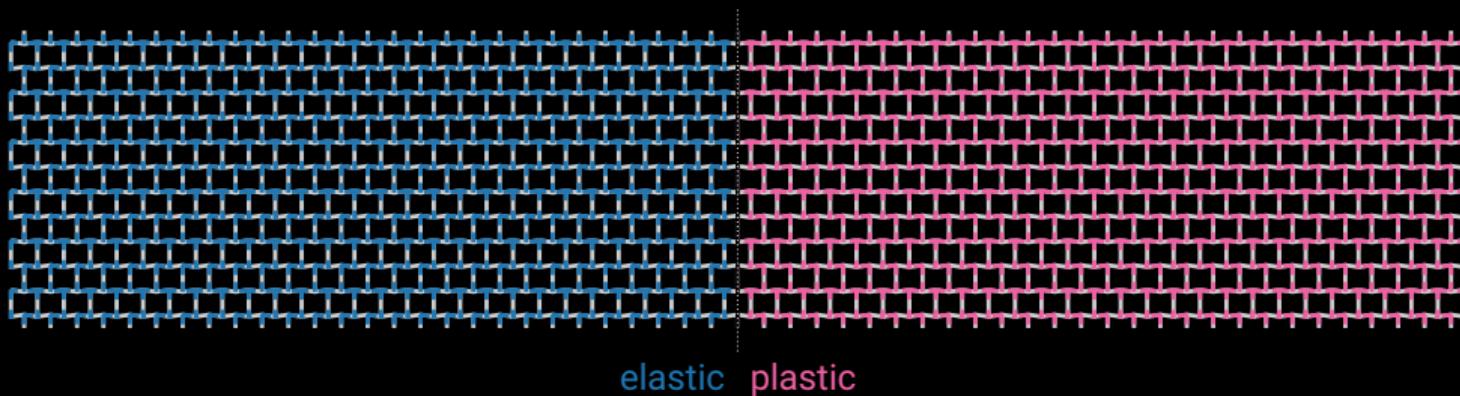
The Yield Function determines the Scaling of the Hardening

- The scaling of the hardening tensor can be derived from the yield surface
- Scaling the entire yield surface leads to scaling with the area inverse ϑ^{-2}
- Scaling the initial yield surface leads to scaling like the elastic stiffness
- Isotropic hardening of the form $\Phi = |\dots| - \Phi_y(1 + h_0)$ leads to scaling with the area inverse ϑ^{-2}



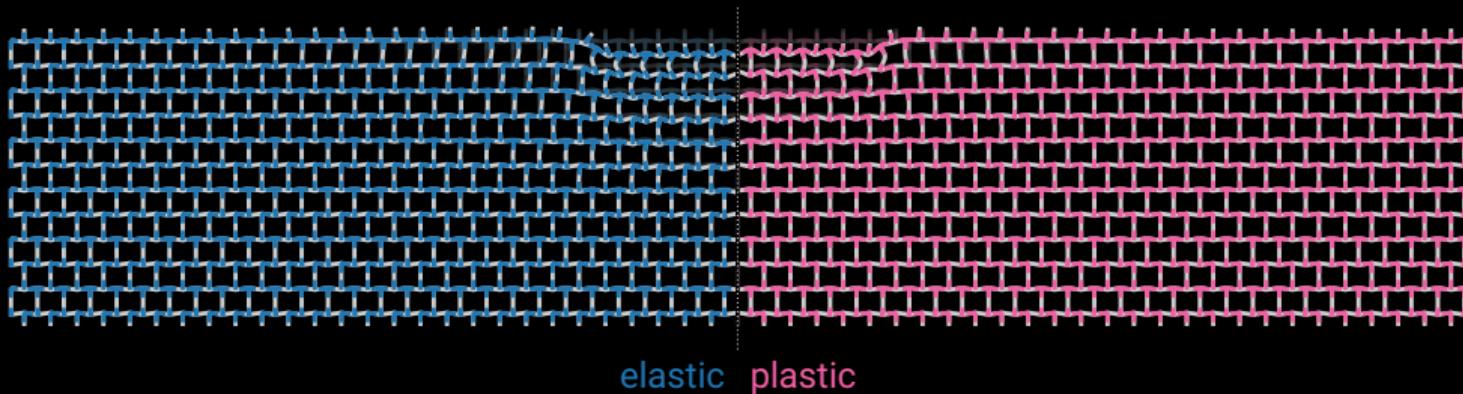
Conclusions and Outlook

- Kinematic hardening plasticity has been implemented for beam elements



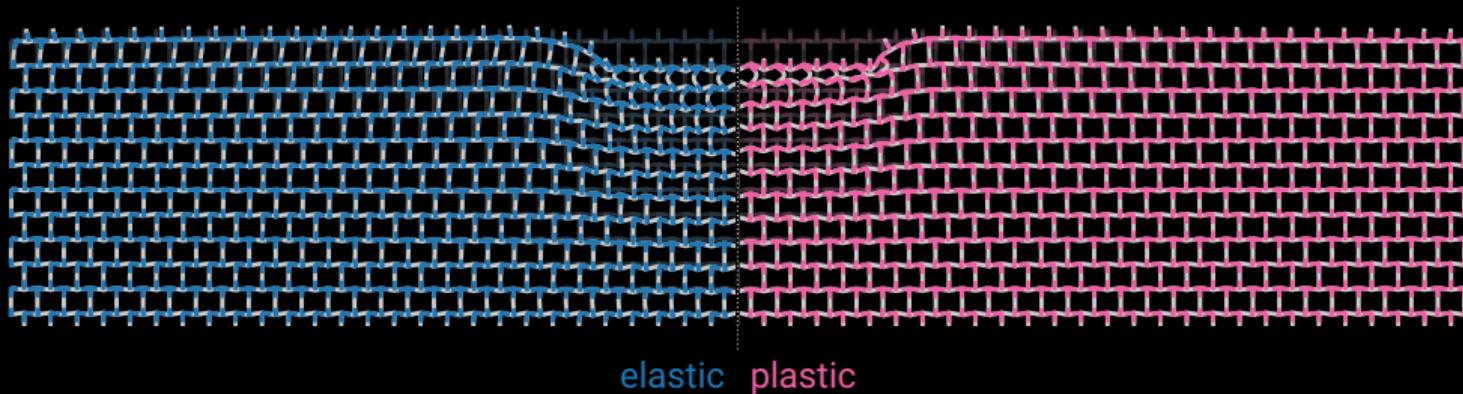
Conclusions and Outlook

- Kinematic hardening plasticity has been implemented for beam elements
- The scaling of the hardening tensor has been determined by numerical trials



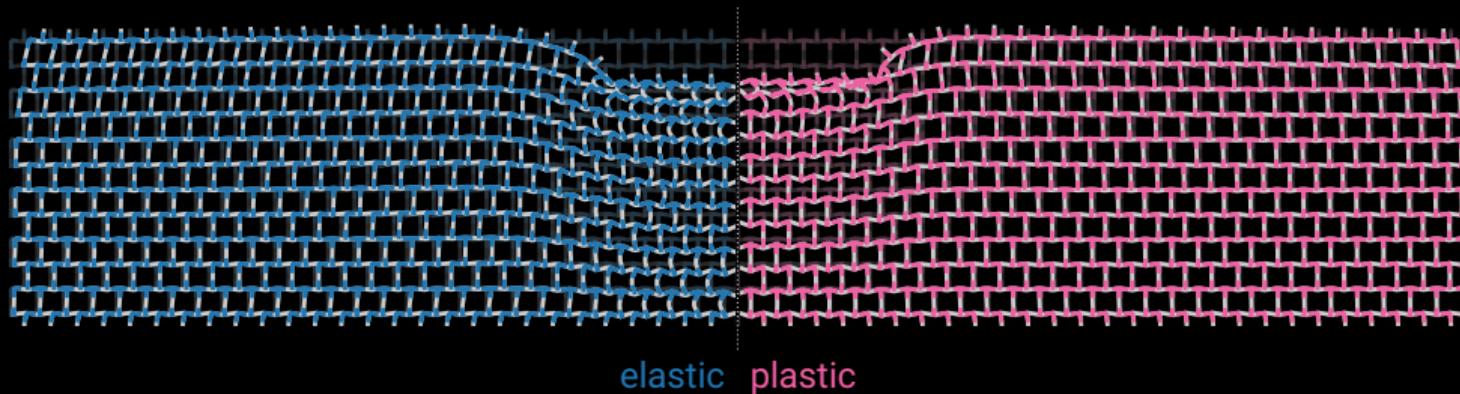
Conclusions and Outlook

- Kinematic hardening plasticity has been implemented for beam elements
- The scaling of the hardening tensor has been determined by numerical trials
- This scaling can be motivated by the scaling of the plastic flow



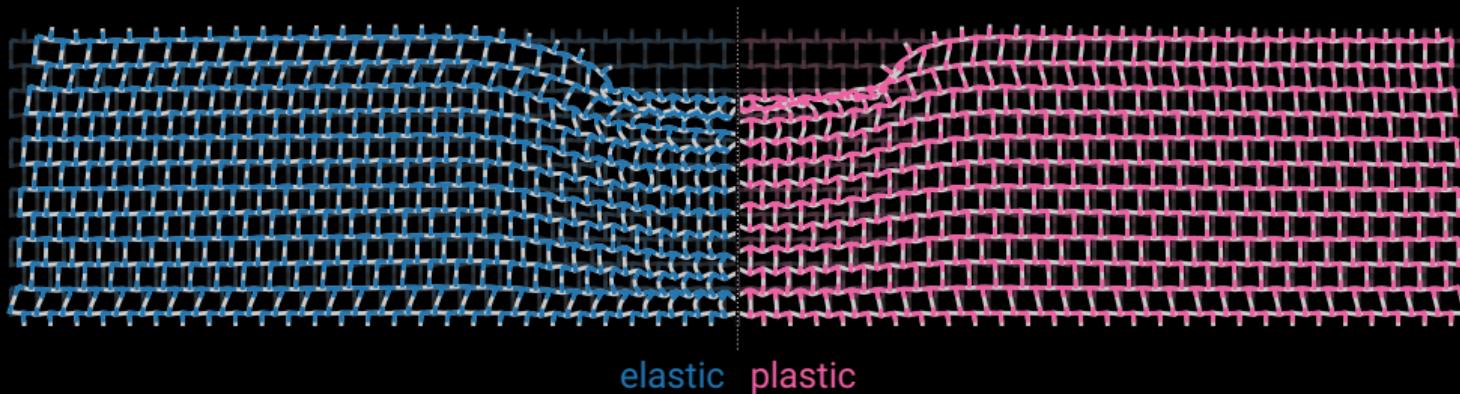
Conclusions and Outlook

- Kinematic hardening plasticity has been implemented for beam elements
- The scaling of the hardening tensor has been determined by numerical trials
- This scaling can be motivated by the scaling of the plastic flow
- Further investigations into the impact behavior of architected materials possible



Conclusions and Outlook

- Kinematic hardening plasticity has been implemented for beam elements
- The scaling of the hardening tensor has been determined by numerical trials
- This scaling can be motivated by the scaling of the plastic flow
- Further investigations into the impact behavior of architected materials possible
- The next step is the implementation of contact between the beams



Thank you!
Questions?

References I

- [1] T. Gärtner, S. J. van den Boom, J. Weerheim, and L. J. Sluys. "Geometric effects on impact mitigation in architected auxetic metamaterials". In: *Mechanics of Materials* 191 (2024).
- [2] Ludwig Herrnböck, Ajeet Kumar, and Paul Steinmann. "Geometrically exact elastoplastic rods: determination of yield surface in terms of stress resultants". In: *Computational Mechanics* 67.3 (2021).
- [3] Ludwig Herrnböck, Ajeet Kumar, and Paul Steinmann. "Two-scale off-and online approaches to geometrically exact elastoplastic rods". In: *Computational Mechanics* 71.1 (2022).
- [4] Smriti, Ajeet Kumar, Alexander Großmann, and Paul Steinmann. "A thermoelastoplastic theory for special Cosserat rods". In: *Mathematics and Mechanics of Solids* 24.3 (2018).

References II

- [5] Smriti, Ajeet Kumar, and Paul Steinmann. "A finite element formulation for a direct approach to elastoplasticity in special Cosserat rods". In: *International Journal for Numerical Methods in Engineering* 122.5 (2020).
- [6] Michael A. Crisfield and Gordan Jelenić. "Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation". In: *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 455.1983 (1999).
- [7] J. C. Simo and L. Vu-Quoc. "A three-dimensional finite-strain rod model. part II: Computational aspects". In: *Computer Methods in Applied Mechanics and Engineering* 58.1 (1986).