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Metamaterial Architecture needs Accurate Beam Representation

� Mechanical metamaterials promise benefits
for impact mitigation

� Harvesting the properties of the microstructure
requires a good representation

� Lattice materials are a collection of beams
� Impact scenarios come with large

deformations
� Designing architectures requires fitting

material models for all scales
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Scaling of plastic beam properties not fully explored

� Beams modelled as geometrically nonlinear
Timoshenko beams

� Plasticity as proposed by Smriti et al. 2018;
2020

� Herrnböck, Kumar, and Steinmann 2021
determined the yield surface with geometric
scaling

� Kinematic hardening is added by Herrnböck,
Kumar, and Steinmann 2022

� The scaling of the hardening tensor is not fully
explored
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No Size Effects in Elastic Beams
� FE-Implementation of Simo-Reissner beam

elements in JEM/JIVE
� Geometric scaling and meshing with GMSH

� Linear elasticity assumed on material level[
n
m

]
= K

[
ε
κ

]
� Scaling of elasticity implicitly with used

stiffness matrix

K = diag (GAs,GAs,EA,EI1,EI2,GJ )
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No Size Effects in Ideal Plastic Beams
� Plasticity modelled in the 6D space of the

beam forces and moments
� Implementation using an explicit cutting-plane

algorithm

� Yield function and surface taken from
Herrnböck, Kumar, and Steinmann 2021

� Scaling of the yield surface as reported there

ny?
i = ϑ2ny

i and my?
i = ϑ3my

i

elastic plastic
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Size Effects in Hardening Plastic Beam Implementation

� Kinematic hardening with a hardening tensor
H added as described by Herrnböck, Kumar,
and Steinmann 2022

� Two options for scaling with hardening

entire surface: (ny
i − nh

i )
? = ϑ2(ny

i − nh
i ) or

initial surface: (ny
i − nh

i )
? = ϑ2ny

i − nh
i
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Scaling of the Hardening Tensor is dependent on the Yield
Function
� Scaling of the hardening contribution in the

yield surface determines scaling of the
hardening tensor

� For the two discussed options:

entire surface: H ? = Hϑ−2 or

initial surface: H ? =

[
Hεεϑ

2 Hεκϑ
3

Hκεϑ
3 Hκκϑ

4

]
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Motivation of the Scaling of the Hardening Tensor

u

� Cantilever beam with a prescribed displacement at the tip EA = 10
� Simple yield function and constant strain ε = 0.11
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The Yield Function determines the Scaling of the Hardening
� The scaling of the hardening tensor can be derived from the yield surface

� Scaling the entire yield surface leads to scaling with the area inverse ϑ−2

� Scaling the initial yield surface leads to scaling like the elastic stiffness
� Isotropic hardening of the form Φ = |. . . | − Φy(1 + h0) leads to scaling with the

area inverse ϑ−2
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Conclusions and Outlook
� Kinematic hardening plasticity has been implemented for beam elements

� The scaling of the hardening tensor has been determined by numerical trials
� This scaling can be motivated by the scaling of the plastic flow
� Further investigations into the impact behavior of architected materials possible
� The next step is the implementation of contact between the beams

plasticelastic
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Thank you!
Questions?

Gärtner et al., GAMM 2024, Plastic Scaling for Architected Materials
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