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Metamaterial Architecture needs Accurate Beam Representation

= Mechanical metamaterials promise benefits
for impact mitigation

= Harvesting the properties of the microstructure
requires a good representation

= Lattice materials are a collection of beams

= Impact scenarios come with large
deformations

= Designing architectures requires fitting
material models for all scales
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Scaling of plastic beam properties not fully explored

= Beams modelled as geometrically nonlinear
Timoshenko beams
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Scaling of plastic beam properties not fully explored

= Beams modelled as geometrically nonlinear
Timoshenko beams

= Plasticity as proposed by Smriti et al. 2018;
2020

Smriti, Kumar, Gromann, and Steinmann Mathematics and Mechanics of Solids 24.3 (2018)
Smriti, Kumar, and Steinmann International Journal for Numerical Methods in Engineering 122.5 (2020)
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Scaling of plastic beam properties not fully explored

= Beams modelled as geometrically nonlinear
Timoshenko beams

= Plasticity as proposed by Smriti et al. 2018;
2020

= Herrnbock, Kumar, and Steinmann 2021
determined the yield surface with geometric
scaling

Herrnbock, Kumar, and Steinmann Computational Mechanics 67.3 (2021)
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Scaling of plastic beam properties not fully explored

Beams modelled as geometrically nonlinear
Timoshenko beams

Plasticity as proposed by Smriti et al. 2018;
2020

Herrnbock, Kumar, and Steinmann 2021
determined the yield surface with geometric
scaling

Kinematic hardening is added by Herrnbock,
Kumar, and Steinmann 2022

The scaling of the hardening tensor is not fully
explored

Herrnbock, Kumar, and Steinmann Computational Mechanics 71.1 (2022)
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No Size Effects in Elastic Beams

= FE-Implementation of Simo-Reissner beam
elements in JEM/JIVE
= Geometric scaling and meshing with GMSH
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= Scaling of elasticity implicitly with used
stiffness matrix

K = diag (GA,, GA,, EA, EL,, EL, GJ)
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No Size Effects in Elastic Beams

FE-Implementation of Simo-Reissner beam _<_>_
elements in JEM/JIVE

Geometric scaling and meshing with GMSH
Linear elasticity assumed on material level

o] = <[

Scaling of elasticity implicitly with used
stiffness matrix

Stress

K = diag (GA,, GA,, EA, EL,, EL, GJ)
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No Size Effects in Ideal Plastic Beams

= Plasticity modelled in the 6D space of the _<_>_ _<_>_
beam forces and moments

= Implementation using an explicit cutting-plane elastic plastic
algorithm
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No Size Effects in Ideal Plastic Beams

Plasticity modelled in the 6D space of the _<_>_
beam forces and moments

Implementation using an explicit cutting-plane

algorithm

Yield function and surface taken from

Herrnbock, Kumar, and Steinmann 2021
Scaling of the yield surface as reported there

n/* =9*n! and m!" =93 m!
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Size Effects in Hardening Plastic Beam Implementation

= Kinematic hardening with a hardening tensor _<_>_
H added as described by Herrnbock, Kumar,

and Steinmann 2022
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Size Effects in Hardening Plastic Beam Implementation

= Kinematic hardening with a hardening tensor _<_>_
H added as described by Herrnbock, Kumar,
and Steinmann 2022

= Two options for scaling with hardening

— M =9*(n! —nl') or
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entire surface: (n/
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Scaling of the Hardening Tensor is dependent on the Yield
Function

= Scaling of the hardening contribution in the _Q_
yield surface determines scaling of the

hardening tensor
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Motivation of the Scaling of the Hardening Tensor
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Motivation of the Scaling of the Hardening Tensor

= Cantilever beam with a prescribed displacement at the tip £A = 10

= Simple yield function ® = ‘Ny]\gg ’ — 1 and constant straine = 0.11

— Plastic Flow (~ 9?)
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Motivation of the Scaling of the Hardening Tensor

Cantilever beam with a prescribed displacement at the tip EA = 10 and H = 10

Simple yield function & = ‘W‘ — 1 and constant strain ¢ = 0.11

= Hardeningtermis Oy, ® - H - Oy, ®
The derivative 0y, ® does not scale with
Thus the hardening tensor should scale with 2
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Motivation of the Scaling of the Hardening Tensor

= Cantilever beam with a prescribed displacement at the tip £A = 10 and H = 1092
= Simple yield function & = ‘W‘ — 1 and constant strain ¢ = 0.11
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The Yield Function determines the Scaling of the Hardening

= The scaling of the hardening tensor can be derived from the yield surface
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The Yield Function determines the Scaling of the Hardening
= The scaling of the hardening tensor can be derived from the yield surface

= Scaling the entire yield surface leads to scaling with the area inverse 92
= Scaling the initial yield surface leads to scaling like the elastic stiffness
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The Yield Function determines the Scaling of the Hardening

= The scaling of the hardening tensor can be derived from the yield surface
= Scaling the entire yield surface leads to scaling with the area inverse 92
= Scaling the initial yield surface leads to scaling like the elastic stiffness

= |sotropic hardening of the form @ = |...| — ®,(1 + ko) leads to scaling with the
area inverse 92
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Conclusions and Outlook

= Kinematic hardening plasticity has been implemented for beam elements

elastic plastic
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Conclusions and Outlook

= Kinematic hardening plasticity has been implemented for beam elements

The scaling of the hardening tensor has been determined by numerical trials

= This scaling can be motivated by the scaling of the plastic flow

elastic plastic
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Conclusions and Outlook

= Kinematic hardening plasticity has been implemented for beam elements

= The scaling of the hardening tensor has been determined by numerical trials

= This scaling can be motivated by the scaling of the plastic flow

Further investigations into the impact behavior of architected materials possible
The next step is the implementation of contact between the beams
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Thank you!
Questions?
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