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Auxetic materials appear promising for impact mitigation
� auxetic materials are materials with a negative Poisson’s ratio

� materials that contract laterally when compressed

� promising capabilities for impact mitigation

� natural densification at the impact location
� better involvement of lateral material

� auxetic materials hardly found in nature
� assumptions don’t take material architecture into account

ν > 0 ν < 0

non-auxetic and auxetic materials
(Lim 2015)

non-auxetic and auxetic material under
impact (Kolken et al. 2017)
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Architectures selected to ensure comparability

� Wide range of possibilities to generate auxeticity

� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Mass and outer dimensions are kept the same:
Conventional honeycomb in W-configuration

� conventional honeycombs need thicker bars for same mass

3 / 14



Architectures selected to ensure comparability

� Wide range of possibilities to generate auxeticity

� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Mass and outer dimensions are kept the same:
Conventional honeycomb in W-configuration

� conventional honeycombs need thicker bars for same mass

3 / 14



Architectures selected to ensure comparability

� Wide range of possibilities to generate auxeticity

� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Mass and outer dimensions are kept the same:
Conventional honeycomb in W-configuration

� conventional honeycombs need thicker bars for same mass

3 / 14



Architectures selected to ensure comparability

� Wide range of possibilities to generate auxeticity

� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Mass and outer dimensions are kept the same:
Conventional honeycomb in W-configuration
Auxetic re-entrant honeycombs rotated by 90◦
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Modelling of lattices with rods to reduce runtime

� Architectures defined as assembly of rods

� Rods represented as geometrically nonlinear
Timoshenko beams

� FE-implementation of Simo-Reissner-elements
in JEM/JIVE (C++ FE-Toolkit)

� Beam-To-Beam contact using penalty
parameters

� Tree like contact search algorithm
with exclusion of the joint elements

� Time marching with an explicit
predictor-corrector scheme

� Time step adaptivity using a Milne-device
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Fast computation by using beam-type elasto-plasticity

� Steel as material (E = 210GPa, ν = 0.265)

� J2-plasticity with isotropic hardening assumed
on material scale

� Yield formulated in the beam-type stress space
� Isotropic hardening on material level relates to

kinematic hardening on beam level
� Yield surface and hardening parameters taken

from Herrnböck et al. (2021 & 2022)
� Geometric scaling of the hardening parameters

introduced
� Size-objective formulation for the entire

material model
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Changes in geometry lead to changes in stiffness
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Plasticity & contact have some effect
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Rod thickness has little influence after onset of plasticity
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Plasticity can induce buckling
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Development of stiffness differs for architectures
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Poisson’s ratio tends to 0 with compression
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Impact compression tests

� Impact simulation conducted with patches of ∼ 130mm× 65mm

� Apply a constant strain rate of Ḣ = 1000 s−1

� Apply the strain rate at the middle patch 65mm wide
� Evaluating force over the middle patch
� Evaluating the specific energy absorption (SEA)

SEA =
1

m1

∫
F du

∼ 130mm

∼ 65mm
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Auxetic honeycombs are less affected by plasticity
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Conclusions

� Lattice materials as such do not follow linear continuum assumptions

� Plasticity relegates lattice structures to the remaining stiffness of their hinges
� Plasticity induces instabilities in structures
� At medium impact speeds no benefit of a negative Poisson’s ratio observed
� Plasticity leads to stronger localization of the deformation

⇒ Dependency on architecture under investigation
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Thank you!
Comments?

Gärtner et al., 16WCCM, Architectural Choices for Auxetics
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