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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed
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= auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed

= promising capabilities for impact mitigation
" natural densification at the impact location
®  better involvement of lateral material
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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed

= promising capabilities for impact mitigation
" natural densification at the impact location
®  better involvement of lateral material

= auxetic materials hardly found in nature
= assumptions don't take material architecture into account
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Architectures selected to ensure comparability

= Wide range of possibilities to generate auxeticity
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Architectures selected to ensure comparability

= Wide range of possibilities to generate auxeticity

= Focus on the most common for a comparison:

.<->. Auxetic re-entrant honeycombs

= Mass and outer dimensions are kept the same:
Conventional honeycomb in W-configuration

= conventional honeycombs need thicker bars for same mass

TNO fuoeiit

3/14



Architectures selected to ensure comparability

= Wide range of possibilities to generate auxeticity

= Focus on the most common for a comparison:

Conventional honeycomb in W-configuration

Auxetic re-entrant honeycombs rotated by 90°

Conventional honeycomb in L-configuration
= conventional honeycombs need thicker bars for same mass

.<->. Auxetic re-entrant honeycombs
= Mass and outer dimensions are kept the same:
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly of rods
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly of rods

= Rods represented as geometrically nonlinear
Timoshenko beams

= FE-implementation of Simo-Reissner-elements
in JEM/JIVE (C++ FE-Toolkit)

= Beam-To-Beam contact using penalty
parameters

= Tree like contact search algorithm
with exclusion of the joint elements

= Time marching with an explicit
predictor-corrector scheme

= Time step adaptivity using a Milne-device
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Fast computation by using beam-type elasto-plasticity

= Steel as material (£ = 210 GPa, v = 0.265)
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Fast computation by using beam-type elasto-plasticity

= Steel as material (£ = 210 GPa, v = 0.265)

= J2-plasticity with isotropic hardening assumed
on material scale

= Yield formulated in the beam-type stress space
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Fast computation by using beam-type elasto-plasticity

= Steel as material (F = 210 GPa, v = 0.265)

= J2-plasticity with isotropic hardening assumed
on material scale

= Yield formulated in the beam-type stress space

= |sotropic hardening on material level relates to
kinematic hardening on beam level

= Yield surface and hardening parameters taken
from Herrnbdck et al. (2021 & 2022)
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Fast computation by using beam-type elasto-plasticity

= Steel as material (F = 210 GPa, v = 0.265)

= J2-plasticity with isotropic hardening assumed
on material scale

= Yield formulated in the beam-type stress space

= |sotropic hardening on material level relates to
kinematic hardening on beam level

= Yield surface and hardening parameters taken
from Herrnbdck et al. (2021 & 2022)

= Geometric scaling of the hardening parameters
introduced

= Size-objective formulation for the entire 1 L

material model ‘
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Changes in geometry lead to changes in stiffness

E g ------ elastic

E, [GPa]

y 0 20 40
T—»:z: Unconfined compression (y-direction) [%]
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Changes in geometry lead to changes in stiffness

E g ------ elastic

E, [GPa]

y 0 20 40
T—»:z: Unconfined compression (y-direction) [%]
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Plasticity & contact have some effect

E g ------ elastic - - - plastic

E, [GPa]
/

y 0 20 40
T—»:z: Unconfined compression (y-direction) [%]
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Plasticity & contact have some effect

E g ------ elastic - - - plastic
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Plasticity & contact have some effect

E g ------ elastic - - - plastic — plastic & contact

E, [GPa]

y 0 20 40
T—»:z: Unconfined compression (y-direction) [%]
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Plasticity & contact have some effect

E g elastic plastic — plastic & contact

—
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Rod thickness has little influence after onset of plasticity

------ elastic - - - plastic — plastic & contact
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Plasticity can induce buckling

E g ------ elastic - - - plastic — plastic & contact

E, [GPa]
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Plasticity can induce buckling

------ elastic - - - plastic — plastic & contact

E, [GPa]
><

y 0 20 40
T—>:z: Unconfined compression (y-direction) [%]
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Plasticity can induce buckling

------ elastic - - - plastic — plastic & contact

E, [GPa]
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Development of stiffness differs for architectures

------ elastic - - - plastic — plastic & contact
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Poisson’s ratio tends to 0 with compression

— plastic & contact
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Impact compression tests

= Impact simulation conducted with patches of ~ 130 mm x 65 mm

fe———— ~ 130 mm ——>
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Impact compression tests

= Impact simulation conducted with patches of ~ 130 mm x 65 mm
= Apply a constant strain rate of # = 1000s~!
= Apply the strain rate at the middle patch 65 mm wide
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Impact compression tests

Impact simulation conducted with patches of ~ 130 mm x 65 mm

= Apply a constant strain rate of A = 1000s~!

TNO fuperi

Apply the strain rate at the middle patch 65 mm wide
Evaluating force over the middle patch
Evaluating the specific energy absorption (SEA)
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Auxetic honeycombs are less affected by plasticity
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Auxetic honeycombs are less affected by plasticity
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Auxetic honeycombs are less affected by plasticity
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Auxetic honeycombs are less affected by plasticity

% — plastic & contact
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Auxetic honeycombs are less affected by plasticity

------ elastic - - - plastic — plastic & contact
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions

POV )

2 €
2 €
(2
(2
(2

Y:0%0% 2% % POV ®

z
TNO Ttupeiit
14/14

@

@

O
@

X
X




Conclusions

= Lattice materials as such do not follow linear continuum assumptions
= Plasticity relegates lattice structures to the remaining stiffness of their hinges

= Plasticity induces instabilities in structures
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
Plasticity relegates lattice structures to the remaining stiffness of their hinges
Plasticity induces instabilities in structures

At medium impact speeds no benefit of a negative Poisson'’s ratio observed
Plasticity leads to stronger localization of the deformation
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
Plasticity relegates lattice structures to the remaining stiffness of their hinges
Plasticity induces instabilities in structures
At medium impact speeds no benefit of a negative Poisson'’s ratio observed
Plasticity leads to stronger localization of the deformation

— Dependency on architecture under investigation
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Thank you!
Comments?

‘ Gartner et al., 16WCCM, Architectural Choices for Auxetk‘
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