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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed

non-auxetic and auxetic materials
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= promising capabilities for impact mitigation
" natural densification at the impact location
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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed

= promising capabilities for impact mitigation
" natural densification at the impact location
®  better involvement of lateral material

= auxetic materials hardly found in nature
= assumptions don't take material architecture into account
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Architectures selected to ensure comparability

= Wide range of possibilities to generate auxeticity
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= Focus on the most common for a comparison:

Auxetic re-entrant honeycombs
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Architectures selected to ensure comparability

E g = Wide range of possibilities to generate auxeticity
= Focus on the most common for a comparison:
-<->- Auxetic re-entrant honeycombs
= Stiffness and outer dimensions are kept the same:

Conventional honeycomb in W-configuration
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Architectures selected to ensure comparability

= Wide range of possibilities to generate auxeticity

= Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

-<_>- = Stiffness and outer dimensions are kept the same:
Conventional honeycomb in W-configuration
Auxetic re-entrant honeycombs rotated by 90°
Conventional honeycomb in L-configuration
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Experiments show higher forces for the auxetics
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Experiments show higher forces for the auxetics
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly of rods
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= Architectures defined as assembly of rods

= Rods represented as geometrically nonlinear
Timoshenko beams

= FE-implementation of Simo-Reissner-elements
in JEM/JIVE (C++ FE-Toolkit)
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= Architectures defined as assembly of rods

= Rods represented as geometrically nonlinear
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with exclusion of the joint elements
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly of rods

= Rods represented as geometrically nonlinear
Timoshenko beams

= FE-implementation of Simo-Reissner-elements
in JEM/JIVE (C++ FE-Toolkit)

= Beam-To-Beam contact using penalty
parameters

= Tree like contact search algorithm
with exclusion of the joint elements

= Time marching with an explicit
predictor-corrector scheme

= Time step adaptivity using a Milne-device
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Fast computation of geometrically nonlinear beams

= Six DOFs along the beam-axis
= Resulting in six strain prescriptors




Fast computation of geometrically nonlinear beams

= Six DOFs along the beam-axis

= Resulting in six strain prescriptors

= Linear elastic material law with six stress
resultants

= Steel as material (F = 210 GPa, v = 0.265)

6/16



Fast computation of geometrically nonlinear beams

= Six DOFs along the beam-axis

= Resulting in six strain prescriptors

= Linear elastic material law with six stress
resultants

= Steel as material (F = 210 GPa, v = 0.265)

= Including material nonlinearities not trivial

= Popular approach of sub-integration too slow
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Fast computation of geometrically nonlinear beams

= Six DOFs along the beam-axis

= Resulting in six strain prescriptors

= Linear elastic material law with six stress
resultants

= Steel as material (F = 210 GPa, v = 0.265)

= Including material nonlinearities not trivial

= Popular approach of sub-integration too slow

= Possibilty to model elastoplasticity on the
beam-level

= Approach suggested by Smriti et al. 2018, 2020
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Further speed-up with beam-type elasto-plasticity

= Yield formulated in the stress resultant space
= Plastic strain prescriptors fitting the beam
configuration
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Further speed-up with beam-type elasto-plasticity

= Yield formulated in the stress resultant space
= Plastic strain prescriptors fitting the beam
configuration

= J2-plasticity with isotropic hardening assumed
on material scale

= Yield surface and hardening tensor obtained by
Herrnbock et al. 2021, 2022

= |sotropic hardening on material level relates to
kinematic hardening on beam level
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Further speed-up with beam-type elasto-plasticity

= Yield formulated in the stress resultant space

= Plastic strain prescriptors fitting the beam
configuration

= J2-plasticity with isotropic hardening assumed

on material scale %
= Yield surface and hardening tensor obtained by
Herrnbock et al. 2021, 2022
= |sotropic hardening on material level relates to
kinematic hardening on beam level
= Consistent geometric scaling of the hardening
tensor introduced

Gartner et al. Computational Mechanics accepted for publication (2024) : L
= Size-objective formulation for the entire

material model
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Changes in geometry lead to changes in stiffness

E g ------ elastic

E, (GPa)
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Changes in geometry lead to changes in stiffness

E g ------ elastic

E, (GPa)
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Plasticity leads to free hinging of the joints

E § ------ elastic - - - plastic
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Plasticity leads to free hinging of the joints

E § ------ elastic - - - plastic
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Contact has little influence on the further behavior

E g ------ elastic - - - plastic — plastic & contact

Unconfined compression (y-direction) (%)
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Plasticity can induce buckling

E g ------ elastic - - - plastic — plastic & contact
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Plasticity can induce buckling
------ elastic - - - plastic — plastic & contact
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Development of stiffness differs for architectures

E § ------ elastic - - - plastic — plastic & contact
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Poisson’s ratio tends to 0 with compression

E g — plastic & contact
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Impact compression tests

= Impact simulation conducted with patches of ~ 130 mm x 65 mm

fe———— ~ 130 mm ——>
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Impact compression tests

= Impact simulation conducted with patches of ~ 130 mm x 65 mm
= An impactor of 1.2kg is emulated at the top with an initial speed of 70 ms~!
= Apply the impact at the middle patch 65 mm wide
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Impact compression tests

TNO fuperi

Impact simulation conducted with patches of ~ 130 mm x 65 mm

= An impactor of 1.2kg is emulated at the top with an initial speed of 70 ms~!
Apply the impact at the middle patch 65 mm wide
Evaluating force over the middle patch

Evaluating the specific energy absorption (SEA)
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Impact Tests — Influence of material nonlinearities
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Impact Tests — Influence of material nonlinearities
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Impact Tests — Influence of material nonlinearities

20

SEA (MJ/kg)

0 20 40
compression (%)

B e SR

TNO fuoeiit

15716



Impact Tests — Influence of material nonlinearities
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
= Interaction between material and geometric nonlinearities crucial
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
= Interaction between material and geometric nonlinearities crucial
= Plasticity leads to stronger localization of the deformation

= Dependency on architecture under investigation
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Conclusions

= Lattice materials as such do not follow linear continuum assumptions
= Interaction between material and geometric nonlinearities crucial
= Plasticity leads to stronger localization of the deformation
— Dependency on architecture under investigation
= Auxetic structures lead to temporal and spatial concentration of forces
= Have a look at the poster as well!

Gartner, Dekker, van Veen, van den Boom, and Amaral publication in preparation

NINTZNZNPNIN\

TNO fuoeiit

16 /16



Thank you!
Comments?

‘ October 22, 204
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