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Auxetic materials appear promising for impact mitigation
� auxetic materials are materials with a negative Poisson’s ratio

� materials that contract laterally when compressed

� promising capabilities for impact mitigation

� natural densification at the impact location
� better involvement of lateral material

� auxetic materials hardly found in nature
� assumptions don’t take material architecture into account

ν > 0 ν < 0

non-auxetic and auxetic materials
(Lim 2015)

non-auxetic and auxetic material under
impact (Kolken et al. 2017)
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Architectures selected to ensure comparability

� Wide range of possibilities to generate auxeticity

� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Stiffness and outer dimensions are kept the same:
Conventional honeycomb in W-configuration
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� Focus on the most common for a comparison:
Auxetic re-entrant honeycombs

� Stiffness and outer dimensions are kept the same:
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Experiments show higher forces for the auxetics
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Modelling of lattices with rods to reduce runtime

� Architectures defined as assembly of rods

� Rods represented as geometrically nonlinear
Timoshenko beams

� FE-implementation of Simo-Reissner-elements
in JEM/JIVE (C++ FE-Toolkit)

� Beam-To-Beam contact using penalty
parameters

� Tree like contact search algorithm
with exclusion of the joint elements

� Time marching with an explicit
predictor-corrector scheme

� Time step adaptivity using a Milne-device
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Fast computation of geometrically nonlinear beams

� Six DOFs along the beam-axis
� Resulting in six strain prescriptors

� Linear elastic material law with six stress
resultants

� Steel as material (E = 210GPa, ν = 0.265)
� Including material nonlinearities not trivial
� Popular approach of sub-integration too slow
� Possibilty to model elastoplasticity on the

beam-level
� Approach suggested by Smriti et al. 2018, 2020
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Further speed-up with beam-type elasto-plasticity

� Yield formulated in the stress resultant space
� Plastic strain prescriptors fitting the beam

configuration

� J2-plasticity with isotropic hardening assumed
on material scale

� Yield surface and hardening tensor obtained by
Herrnböck et al. 2021, 2022

� Isotropic hardening on material level relates to
kinematic hardening on beam level

� Consistent geometric scaling of the hardening
tensor introduced
Gärtner et al. Computational Mechanics accepted for publication (2024)

� Size-objective formulation for the entire
material model
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Changes in geometry lead to changes in stiffness
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Plasticity leads to free hinging of the joints
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Contact has little influence on the further behavior
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Plasticity can induce buckling

0 20 40
0

1

2

Unconfined compression (y-direction) (%)

E y
(G

Pa
)

elastic plastic plastic & contact

x

y

11 / 16



Plasticity can induce buckling

0 20 40
0

1

2

Unconfined compression (y-direction) (%)

E y
(G

Pa
)

elastic plastic plastic & contact

x

y

11 / 16



Development of stiffness differs for architectures
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Poisson’s ratio tends to 0 with compression
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Impact compression tests

� Impact simulation conducted with patches of ∼ 130mm× 65mm

� An impactor of 1.2 kg is emulated at the top with an initial speed of 70ms−1

� Apply the impact at the middle patch 65mm wide
� Evaluating force over the middle patch
� Evaluating the specific energy absorption (SEA)

SEA =
1

m1

∫
F du

∼ 130mm

∼ 65mm
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Impact Tests – Influence of material nonlinearities
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Impact Tests – Influence of material nonlinearities
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Conclusions

� Lattice materials as such do not follow linear continuum assumptions

� Interaction between material and geometric nonlinearities crucial
� Plasticity leads to stronger localization of the deformation

⇒ Dependency on architecture under investigation

� Auxetic structures lead to temporal and spatial concentration of forces

⇒ Have a look at the poster as well!
Gärtner, Dekker, van Veen, van den Boom, and Amaral publication in preparation
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Thank you!
Comments?

October 22, 2024
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