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Auxetic materials appear promising for impact mitigation
� auxetic materials are materials with a negative Poisson’s ratio

� materials that contract laterally when compressed

� promising capabilities for impact mitigation

� natural densification at the impact location
� better involvement of lateral material

� auxetic materials hardly found in nature
� assumptions don’t take material architecture into account

ν > 0 ν < 0

non-auxetic and auxetic materials
(Lim 2015)

non-auxetic and auxetic material under
impact (Kolken et al. 2017)
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Experiments are costly and give only limited insight

� Re-entrant and Honeycomb unit cells experimentally compared

� Results indicate higher stress concentrations for negative Poisson’s ratios
� Experiments allow only for global force measurements
� Experiments require elaborate equipment and skilled technicians

⇒ Need for computational framework

Gärtner, Dekker, van Veen, van den Boom, and Amaral Int. J. Impact Eng. (2025)
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Modelling of lattices with rods to reduce runtime

� Architectures defined as assembly nonlinear
Timoshenko-Ehrenfest beams

� FE-implementation using in JEM/JIVE (C++
FE-Toolkit)

� Beam-To-Beam contact using penalty
parameters

� Time marching with an adaptive
predictor-corrector scheme

� Elastoplasticity directly incorporated into the
beam-formulation
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Direct modelling of elastoplasticity in beams

� Yield formulated in the stress resultant space
� Plastic strain prescriptors fitting the beam

configuration

� J2-plasticity with isotropic hardening assumed
on material scale

� Yield surface and hardening tensor obtained by
Herrnböck et al. (2021; 2022)

� Isotropic hardening on material level relates to
kinematic hardening on beam level

� Consistent geometric scaling of the hardening
tensor introduced
Gärtner et al. Comput. Mech. 75.5 (2025)

� Size-objective formulation for the entire
material model
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Material testing conditions

� Generic steel with E = 210GPa, ν = 0.3, % = 7850 kgm−3

� Presented plasticity model corresponding to J2-Plasticity with isotropic hardening
� Boundary conditions to be similar to a physical material test setup

u u u u u u u u
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Localization in static compression of the re-entrant patch
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Honeycomb patches deform homogeneously
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Non-auxetic patch is stiffer
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Embrittlement for faster rates in the re-entrant patch
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Embrittlement for faster rates in the honeycomb patch
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Embrittlement for faster rates in the honeycomb patch
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Peaks in stress-strain curve explained by kinetic energy (8x8)
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Energy localize with the deformation

Static compression
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Energy localize with the deformation
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Energy localize with the deformation
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Similar behaviour in the honeycomb patch
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Conclusions

� Auxetic honeycombs show a softer behaviour than conventional honeycombs
� The softening effect is related to the localization of deformation
� No localization observed for the conventional honeycombs

� Dynamic compression promotes localization near the compressing edge
� Both structures show similar behaviour during dynamic compression
� Dependence of stresses on microstructural size during dynamic loading

15 / 15



Conclusions

� Auxetic honeycombs show a softer behaviour than conventional honeycombs
� The softening effect is related to the localization of deformation
� No localization observed for the conventional honeycombs
� Dynamic compression promotes localization near the compressing edge
� Both structures show similar behaviour during dynamic compression

� Dependence of stresses on microstructural size during dynamic loading

15 / 15



Conclusions

� Auxetic honeycombs show a softer behaviour than conventional honeycombs
� The softening effect is related to the localization of deformation
� No localization observed for the conventional honeycombs
� Dynamic compression promotes localization near the compressing edge
� Both structures show similar behaviour during dynamic compression
� Dependence of stresses on microstructural size during dynamic loading

15 / 15



Thank you!
Comments?

Gärtner et al., 8CFRAC, Metamaterials under High-Rates
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