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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed

non-auxetic and auxetic materials
(Lim 2015)
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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio
® materials that contract laterally when compressed

= promising capabilities for impact mitigation
" natural densification at the impact location
®  better involvement of lateral material
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Auxetic materials appear promising for impact mitigation

= auxetic materials are materials with a negative Poisson’s ratio

® materials that contract laterally when compressed

= promising capabilities for impact mitigation
" natural densification at the impact location
®  better involvement of lateral material

= auxetic materials hardly found in nature
= assumptions don't take material architecture into account
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Experiments are costly and give only limited insight

= Re-entrant and Honeycomb unit cells experimentally compared

Gartner, Dekker, van Veen, van den Boom, and Amaral Int. J. Impact Eng. (2025)
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Experiments are costly and give only limited insight

= Re-entrant and Honeycomb unit cells experimentally compared
= Results indicate higher stress concentrations for negative Poisson’s ratios

Gartner, Dekker, van Veen, van den Boom, and Amaral Int. J. Impact Eng. (2025)
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Experiments are costly and give only limited insight

= Re-entrant and Honeycomb unit cells experimentally compared

= Results indicate higher stress concentrations for negative Poisson’s ratios
= Experiments allow only for global force measurements

= Experiments require elaborate equipment and skilled technicians

Gartner, Dekker, van Veen, van den Boom, and Amaral Int. J. Impact Eng. (2025)
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Experiments are costly and give only limited insight

= Re-entrant and Honeycomb unit cells experimentally compared
= Results indicate higher stress concentrations for negative Poisson’s ratios
= Experiments allow only for global force measurements
= Experiments require elaborate equipment and skilled technicians
= Need for computational framework

Gartner, Dekker, van Veen, van den Boom, and Amaral Int. J. Impact Eng. (2025)
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly nonlinear
Timoshenko-Ehrenfest beams

= FE-implementation using in JEM/JIVE (C++
FE-Toolkit)
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Modelling of lattices with rods to reduce runtime

= Architectures defined as assembly nonlinear
Timoshenko-Ehrenfest beams

= FE-implementation using in JEM/JIVE (C++
FE-Toolkit)

= Beam-To-Beam contact using penalty
parameters

= Time marching with an adaptive
predictor-corrector scheme

= Elastoplasticity directly incorporated into the
beam-formulation
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Direct modelling of elastoplasticity in beams

= Yield formulated in the stress resultant space
= Plastic strain prescriptors fitting the beam
configuration

——

TNO fuoeiit

5/15



Direct modelling of elastoplasticity in beams

= Yield formulated in the stress resultant space
= Plastic strain prescriptors fitting the beam
configuration

= J2-plasticity with isotropic hardening assumed
on material scale

= Yield surface and hardening tensor obtained by
Herrnbock et al. (2021; 2022)

= |sotropic hardening on material level relates to
kinematic hardening on beam level
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Direct modelling of elastoplasticity in beams

= Yield formulated in the stress resultant space
= Plastic strain prescriptors fitting the beam
configuration

= J2-plasticity with isotropic hardening assumed
on material scale %

= Yield surface and hardening tensor obtained by
Herrnbock et al. (2021; 2022)

= |sotropic hardening on material level relates to
kinematic hardening on beam level

= Consistent geometric scaling of the hardening
tensor introduced 1 L
Gartner et al. Comput. Mech. 75.5 (2025) ‘

= Size-objective formulation for the entire L~ W~~~
material model
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Material testing conditions

= Generic steel with £ = 210GPa,v = 0.3, o = 7850 kgm~—3
= Presented plasticity model corresponding to J2-Plasticity with isotropic hardening
= Boundary conditions to be similar to a physical material test setup
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Localization in static compression of the re-entrant patch

Stress
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Localization in static compression of the re-entrant patch
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Honeycomb patches deform homogeneously
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Honeycomb patches deform homogeneously
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Non-auxetic patch is stiffer

— Re-entrant (8x8) — Honeycomb (8x8)
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Embrittlement for faster rates in the re-entrant patch
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Embrittlement for faster rates in the re-entrant patch
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—— 2X2 — 4x4 — 6x6 — 8x8 — 10x10 — 12x12
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Embrittlement for faster rates in the re-entrant patch
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Embrittlement for faster rates in the honeycomb patch
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Embrittlement for faster rates in the honeycomb patch
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Embrittlement for faster rates in the honeycomb patch
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Embrittlement for faster rates in the honeycomb patch
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Peaks in stress-strain curve explained by kinetic energy (8x8)
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Peaks in stress-strain curve explained by kinetic energy (8x8)

mmm Potential mmm Kinetic mmm Dissipated - - - Total

Specific Energy (kJ/kg)
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Energy localize with the deformation

Static compression
Specific Energy:sm Potential mm Kinetic == Dissipated
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Energy localize with the deformation

250 s~! compression
Specific Energy:sm Potential mm Kinetic == Dissipated
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Energy localize with the deformation

1000 s~ compression
Specific Energy: sm Potential mm Kinetic == Dissipated

L
ANLAN

A
S LA
Il/]\,vv
AN
~/

AL/

NN
ANLANLAN
) "
|

(kJ/kg)

TNO fuoeiit

13/15



Energy localize with the deformation

4000 s~ compression
Specific Energy: sm Potential mm Kinetic == Dissipated
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Similar behaviour in the honeycomb patch
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Conclusions

= Auxetic honeycombs show a softer behaviour than conventional honeycombs
= The softening effect is related to the localization of deformation
= No localization observed for the conventional honeycombs
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Conclusions

= Auxetic honeycombs show a softer behaviour than conventional honeycombs
= The softening effect is related to the localization of deformation

= No localization observed for the conventional honeycombs

= Dynamic compression promotes localization near the compressing edge

= Both structures show similar behaviour during dynamic compression
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Conclusions

= Auxetic honeycombs show a softer behaviour than conventional honeycombs
= The softening effect is related to the localization of deformation

= No localization observed for the conventional honeycombs

= Dynamic compression promotes localization near the compressing edge

= Both structures show similar behaviour during dynamic compression

= Dependence of stresses on microstructural size during dynamic loading
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Thank you!
Comments*

‘ Gartner et al., 8CFRAC, Metamaterials under High-Rat‘
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