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SUMMARY
‘Auxetics are superior materials for impact mitigation’ is a common motif in scientific

literature on the quest for lightweight, impact-resistant materials. This assertion is

driven by the promising properties of auxetic materials, i.e. materials with a negative

Poisson’s ratio. However, it is rarely subjected to rigorous scrutiny in direct com-

parison with positive Poisson’s ratio materials. The objective of the present disser-

tation is to challenge this assertion by investigation and comparison of architected

metamaterials under high-rate loading conditions. Given the absence of relevant

auxetic materials in nature, the negative Poisson’s ratio of a material is engineered

through the careful architecture of its internal structure, leading to the creation of

so-called metamaterials. In order to investigate these metamaterials under impact

conditions, extensive physical set-ups are required while allowing only for global

measurements. The present dissertation is thus concerned with the computational

modelling of architected materials under high-rate compression.

In order to achieve a more profound comprehension of the processes within a

range of different configurations for auxetic metamaterials, a first step is the devel-

opment of an efficient numerical model based on nonlinear Timoshenko-Ehrenfest

beams. The developed model is implemented in a finite element framework. In

addition to geometric non-linearities, also nonlinear material behaviour within the

beams needs to be accounted for. Here, a scaling strategy for the hardening beha-

viour of elastoplastic beams is proposed and implemented.

A set of four different auxetic architectures, based on distinct mechanisms, is em-

ployed to provide a comprehensive overview of the options for architectedmaterials.

These are re-entrant honeycombs, double arrowheads, chiral and anti-chiral archi-

tectures. The conventional honeycomb is used as a benchmark for a non-auxetic

structure. In order to establish a baseline for the comparison of materials, a range

of unit cells from all designs with identical linear elastic properties, such as the

Young’s modulus and the density, are designed. Utilizing the developed numerical

model, the evolution of the elastic properties throughout the deformation process is

examined and correlated to alterations in the loading of the deformed beams. This

evolution is linked to the energy absorption capabilities in an elastic environment

for varying loading speeds and conditions. The findings of this study demonstrate

that higher energy absorption is exhibited only by one of the investigated auxetic

metamaterials, when compared to conventional honeycomb structures.

Furthermore, an experimental campaign is conducted with two reduced sets of

unit cells, designed and manufactured to show the same mass and stiffness, re-

spectively. During the campaign, the samples were subjected to high velocity im-

pact loading. Particular emphasis is placed on the force transmission between the

two sides of the beam structure. The distribution of these forces onto the back
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viii Summary

side of the architected material is supplemented by additional numerical studies.

In this campaign, auxetic materials have been found to demonstrate no advantage

in terms of force transmission and distributions of these forces in comparison with

their non-auxetic counterparts.

A final series of investigations is conducted to examine the impact of varying

strain rates on the localization of deformation across different architectures. In this

investigation, particular emphasis is placed on the patterns in which localized de-

formation occurs and the subsequent effects on the concentration of energy in the

structure. In the tested conditions, auxetic materials demonstrate higher levels of

transmitted forces and lower levels of absorbed energy, resulting in worse impact

protection capabilities.

Consequently, the present dissertation challenges the prevailing consensus in

literature that auxetic materials offer superior impact mitigation capabilities, both

in terms of energy absorption and force transmission. The computational results

demonstrate the deleterious effect of substantial deformations, as well as the neut-

ralization of the Poisson effect at high compression rates. The results of the exper-

imental campaign further support these findings.



SAMENVATTING
“Auxetische materialen zijn superieure materialen voor het verminderen van inslag-

effecten” is een veel voorkomende claim in de wetenschappelijke literatuur in de

zoektocht naar lichte, stootbestendige materialen. Deze bewering is gebaseerd op

de gunstige eigenschappen van auxetische materialen, d.w.z. materialen met een

negatieve dwarscontractiecoëfficiënt. Een grondige vergelijking met materialen die

een positieve dwarscontractiecoëfficiënt hebben, wordt echter zelden gemaakt. Het

doel van dit proefschrift is om deze vergelijking van auxetische en niet-auxetische

materialen bij hoge belastingssnelheden uit te voeren en zo de juistheid van die

bewering te controleren. Aangezien er in de natuur nauwelijks auxetische materia-

len voorkomen, wordt de negatieve dwarscontractiecoëfficiënt verkregen door een

zorgvuldig ontworpen interne structuur, wat leidt tot de creatie van zogenaamde

metamaterialen. Het bestuderen van deze metamaterialen onder omstandigheden

die voor inslag representief zijn vereist uitgebreide fysieke proefopstellingen, die

echter slechts globale metingen mogelijk maken. Daarom richt dit proefschrift zich

op de rekenkundige modellering van geprogrammeerde metamaterialen bij com-

pressie met hoge snelheid.

Om een dieper inzicht te verkrijgen in de vervormingsprocessen in verschillende

configuraties van auxetische metamaterialen, is eerst een efficiënt numeriek mo-

del ontwikkeld, gebaseerd op niet-lineaire Timoshenko-Ehrenfest-balken. Het ont-

wikkelde model is geïmplementeerd in een eindige-elementenraamwerk. Naast

geometrische niet-lineariteiten moet ook het niet-lineaire materiaalgedrag van de

balken worden meegenomen. Hiertoe is een schaalmethodiek van het verstevi-

gingsgedrag van elastoplastische balken ontwikkeld en geïmplementeerd.

Er is gebruik gemaakt van vier verschillende auxetische architecturen, gebaseerd

op uiteenlopende mechanismen, om een volledig overzicht te geven van de mo-

gelijkheden van geprogrammeerde metamaterialen. Het gaat hierbij om concave

honingraten, dubbele pijlvormen, chirale en antichirale structuren. De conventio-

nele honingraat is als referentie gebruikt voor een niet-auxetische structuur. Om

een basis te creëren voor de vergelijking van de verschillende metamaterialen,

is een reeks eenheidscellen ontworpen uit alle configuraties met identieke lineair-

elastische eigenschappen, zoals de elasticiteitsmodulus en de dichtheid. Met be-

hulp van het ontwikkelde numerieke model is de evolutie van de elastische eigen-

schappen tijdens het vervormingsproces onderzocht en gecorreleerd aan de ver-

anderende belasting van de gedeformeerde balken. Deze evolutie is gekoppeld

aan de energieabsorptiecapaciteit in een elastische omgeving bij verschillende be-

lastingssnelheden en -omstandigheden. Uit de resultaten van deze studie blijkt dat

slechts één van de onderzochte auxetische metamaterialen een hogere energie-

absorptie vertoont dan conventionele honingraatstructuren.
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x Samenvattıng

Daarnaast is een experimentele campagne uitgevoerd met twee gereduceerde

sets eenheidscellen, die zodanig zijn ontworpen en vervaardigd dat ze dezelfde

massa en stijfheid bezitten. Tijdens deze campagne zijn de proefstukken onderwor-

pen aan hogesnelheidsimpact, met bijzondere aandacht voor de krachtsoverdracht

tussen de twee zijden van de balkstructuur. De verdeling van deze krachten aan de

achterzijde van het materiaal is verder onderzocht met aanvullende numerieke stu-

dies. Uit deze campagne zijn geen voordelen gebleken van auxetische materialen,

in vergelijking met hun niet-auxetische tegenhangers, wat betreft krachtsoverdracht

en de verdeling van deze krachten. In een laatste studie is de invloed van verschil-

lende rek- en vervormingssnelheden op de lokalisatie van de vervorming in uiteen-

lopende architecturen bestudeerd. Bij dit onderzoek lag de nadruk op de patronen

waarin deze lokalisaties optreden en de daaropvolgende effecten op de energie-

distributie in de structuur. Onder de geteste omstandigheden vertonen auxetische

materialen hogere overgedragen krachten en lagere geabsorbeerde energie, wat

resulteert in een slechtere bescherming tegen inslagen.

Daarom stelt dit proefschrift de heersende consensus in de literatuur ter discus-

sie dat auxetische materialen superieure mogelijkheden bieden voor de verminde-

ring van inslageffecten, zowel wat betreft energieabsorptie als krachtsoverdracht.

Uit de berekende resultaten blijkt dat aanzienlijke vervormingen in auxetische ma-

terialen een nadelig effect hebben en dat de dwarscontractiecoëfficiënt bij hoge

compressiesnelheden wordt geneutraliseerd. De resultaten van de experimentele

campagne ondersteunen deze bevindingen.



ZUSAMMENFASSUNG
„AuxetischeWerkstoffe sind überlegene Materialien zur Minderung von Einschlags-

ereignissen“ ist ein häufiges Narrativ in der wissenschaftlichen Literatur bei der Su-

che nach leichten, stoßbeständigen Materialien. Diese Behauptung stützt sich auf

die vorteilhaften Eigenschaften von auxetischen Werkstoffen, d. h. von Werkstof-

fen mit einer negativen Querkontratktionszahl. Ein gründlicher Vergleich gegenüber

Werkstoffen mit positiver Querkontratktionszahl wird jedoch selten vorgenommen.

Ziel der vorliegenden Dissertation ist es, diesen Vergleich anzustellen und zu hinter-

fragen, inwiefern auxetische Materialien vorteilhaft zur Einschlagsminderung sind.

Da es in der Natur keine auxetischen Materialien gibt, wird die negative Querkont-

ratktionszahl eines Materials durch sorgfältige Gestaltung seiner inneren Struktur

erzeugt, was zur Schaffung sogenannterMetamaterialien führt. Um dieseMetamate-

rialien unter Aufprallbedingungen zu untersuchen, sind umfangreiche physikalische

Versuchsaufbauten erforderlich, die nur globale Messungen zulassen. Die vorlie-

gende Dissertation befasst sich daher mit der rechnergestützten Modellierung von

Balken-basierten Metamaterialien unter Hochgeschwindigkeitskompression.

Um ein vertieftes Verständnis der Vorgänge innerhalb verschiedener Strukturen

für auxetische Metamaterialien zu erreichen, wird in einem ersten Schritt ein ef-

fizientes numerisches Modell auf der Basis nichtlinearer Timoschenko-Ehrenfest-

Balken entwickelt. Das entwickelte Modell wird in einem Finite-Elemente-System

implementiert. Zusätzlich zu den geometrischen Nichtlinearitäten muss auch das

nichtlineareMaterialverhalten innerhalb der Balken berücksichtigt werden. Hier wird

eine Strategie für die Skalierung des Verfestigungsverhaltens von elasto-plasti-

schen Balken vorgeschlagen und implementiert.

Um einen umfassenden Überblick über die Architekturen von Balken-basierten

Metamaterialien zu geben, wird eine Reihe von vier verschiedenen auxetischen

Architekturen verwendet, die auf unterschiedlichen Mechanismen basieren. Dabei

handelt es sich um konkave Bienenwaben, Doppelpfeilspitzen, chirale und antichi-

rale Architekturen. Die konventionelle Bienenwabe dient als Referenz für eine nicht

auxetische Struktur. Um eine Grundlage für den Vergleich von Materialien zu schaf-

fen, wird eine Reihe von Einheitszellen aller Architekturen mit identischen linear-

elastischen Eigenschaften in Stoßrichtung entworfen. Unter Verwendung des ent-

wickelten numerischen Modells wird die Entwicklung der elastischen Eigenschaften

während des Kompression untersucht und mit den Änderungen der Belastung der

verformten Balken korreliert. Diese Entwicklung wird mit den Energieabsorptionsfä-

higkeiten in einer elastischen Umgebung für unterschiedliche Belastungsgeschwin-

digkeiten und -bedingungen verknüpft. Die Ergebnisse dieser Studie zeigen, dass

auxetische Materialien nur in einer begrenzten Anzahl von Szenarien eine höhere

Energieabsorption aufweisen.
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xii Zusammenfassung

Außerdem wird eine Versuchsreihe mit einer reduzierten Anzahl von Einheits-

zellen durchgeführt. Dabei wird besonderes Augenmerk auf die Kraftübertragung

zwischen den beiden Seiten der Balkenstruktur gelegt. Die Verteilung dieser Kräfte

auf die Rückseite des strukturierten Materials wird durch zusätzliche numerische

Studien ergänzt. In diesen Versuchen kann gesehen werden, dass auxetische Ma-

terialien im Vergleich zu ihren nicht auxetischen Gegenstücken keinen Vorteil in

Bezug auf die Kraftübertragung und die Verteilung dieser Kräfte aufweisen.

In einer abschließenden Reihe von Untersuchungen werden die Auswirkungen

unterschiedlicher Dehnungsgeschwindigkeiten auf die Lokalisierung der Verfor-

mung in verschiedenen Architekturen untersucht. Bei dieser Untersuchung wird

besonderes Augenmerk auf die Muster gelegt, in denen diese Lokalisierungen auf-

treten, sowie auf die nachfolgenden Auswirkungen auf die Energiekonzentration

in der Struktur. In diesem Fall zeigen auxetische Materialien höhere übertragene

Kräfte und geringere absorbierte Energie, was zu einem schlechteren Schutz bei

Einschlägen führt.

Folglich stellt die vorliegende Arbeit den in der Literatur vorherrschenden Kon-

sens infrage, dass auxetische Werkstoffe sowohl in Bezug auf die Energieabsorp-

tion als auch auf die Kraftübertragung bessere Fähigkeiten zur Minderung von Stö-

ßen bieten. Die vorliegenden Simulationsresultate zeigen die nachteilige Wirkung

großer Verformungen sowie die Negierung von Querkontraktionen bei hohen Kom-

pressionsraten. Die Ergebnisse der experimentellen Versuchsreihe stützen diese

Erkenntnisse.



PREFACE
There is only one thing in the long run more expensive than education:

no education.

John F. Kennedy

Science, my lad, is made up of mistakes,

but they are mistakes which it is useful to make,

because they lead little by little to the truth.

Jules Verne

Stepping into the train to Amsterdam (and then Delft) on April 1st 2021—carrying

a single suitcase containing my household, in the middle of the Covid-pandemic—

might be viewed as a mistake. But it was a useful mistake. A useful mistake, I am

more than happy to havemade. The following journey providedmewith manymore,

happy, but also some not-so-happy mistakes. Mistakes for myself, mistakes for my

colleagues, and mistakes for science. This book will not tell you all the mistakes

I made throughout my journey, but it will give you the fruit of these mistakes, the

truth to which the mistakes led me. I will not take you up to an epic journey to the

centre of the earth, or around the moon, or 20 000 leagues below the sea. But I will

provide you with the little insight I gained in my journey around the world of auxetics

and all the wonders I saw during just a little more than 80 days.

I hope you will enjoy following me on this journey, I hope you will see the little

fruit my mistakes brought me to, I hope you can take away a bit of new knowledge,

enabling you to do more mistakes, take more fruitful steps, that lead little by little to

the truth.

I will continue doing mistakes, useful mistakes, and maybe also not-so-useful

mistakes—sometimes they are the little ones, that brighten our day the most. My

sincere wish is to meet many of you along the way and that you join me in doing

the mistakes, that still need to be made to inch just a little closer to the truth.

Til Gärtner

Delft, Summer 2025

xiii





CONTENTS
Summary vii

Samenvatting ix

Zusammenfassung xi

Preface xiii

Contents xvi

1. Introduction 1

1.1. Computational modelling of architected metamaterials . . . . . . . . 4

1.2. Influence of the Poisson effect on energy absorption . . . . . . . . . 6

1.3. Influence of the Poisson effect on force transmission . . . . . . . . . 7

2. Beam kinematics and their numerical description 13

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Beams undergoing large deformations . . . . . . . . . . . . . . . . . 15

2.3. Beams in contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Adaptive time marching . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Numerical modelling of the material behaviour 35

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3. Effects of mesh size . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Effects of geometrical scaling . . . . . . . . . . . . . . . . . . . . . . 47

3.5. Strategies for the consistent geometric scaling of hardening . . . . . 50

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Elastic behaviour under impact 59

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Auxetic architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3. Numerical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5. Varying the effective properties . . . . . . . . . . . . . . . . . . . . . 86

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xv



xvi Contents

5. Efficacy of auxetics in physical impact simulations 93

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2. Investigated architectures . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5. Discussion & conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. Inelastic behaviour under different strain rate regimes 123

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2. Investigated architectures . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3. Numerical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4. Effects of the number of unit cells . . . . . . . . . . . . . . . . . . . . 131

6.5. Effects of strain rate on the force transmission . . . . . . . . . . . . 141

6.6. Local energy distributions . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7. Conclusion & Outlook 163

7.1. Computational modelling of architected metamaterials . . . . . . . . 165

7.2. Influence of the Poisson effect on energy absorption . . . . . . . . . 166

7.3. Influence of the Poisson effect on force transmission . . . . . . . . . 167

7.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5. Recommendations for further research . . . . . . . . . . . . . . . . . 169

A. Elastic behaviour under impact 175

A.1. Structural configurations . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.2. Boundary conditions and tangent properties . . . . . . . . . . . . . . 179

B. Efficacy of auxetics in physical impact simulations 191

B.1. Construction drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.2. Experimental and numerical comparisons . . . . . . . . . . . . . . . 193

B.3. Structural samples comparisons . . . . . . . . . . . . . . . . . . . . 194

B.4. Deformation patterns at different speeds . . . . . . . . . . . . . . . . 197

C. Inelastic behaviour under different strain rate regimes 205

C.1. Additional number of unit cells plots . . . . . . . . . . . . . . . . . . 207

C.2. Additional strain rate plots . . . . . . . . . . . . . . . . . . . . . . . . 213

Acknowledgements 217

Contributions 219

Curriculum Vitae 222







1
INTRODUCTION

1



The sky may fall on our heads tomorrow,

but today we’ll go for a walk in the forest.

Asterix the Gaul
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3

T o achieve properties, that are beyond the limits given set by the physics of a

homogenous material, scientists and engineers are in the last decades mov-

ing to synthetic structural materials, so-called metamaterials. Careful design

of the internal structure can be used to tune the metamaterial’s effective proper-

ties in a wide range of physical domains, from electromagnetism to acoustics and

mechanics [Dav&al25]. Among the wide range of properties that can be influenced

in mechanical metamaterials ([Bon&al24; Jia&al23]), is the Poisson’s ratio, describing

the lateral contraction of the material during tension. The Poisson’s ratio is posit-

ive for nearly all naturally occurring materials, with the exceptions of e.g. mammal

teat skin [LVH91] and crystalline silica [KC92], that are of no industrial relevance.

The thus architected negative Poisson’s ratio metamaterials are also called auxet-

ics, a term coined by Evans et al. [Eva&al91] from the Greek auxetos “that may

be increased”. These negative Poisson’s ratio metamaterials have been a topic

of research, especially for the mitigation of impact phenomena [Boh&al23; KZ17;

Ren&al18; SDC16; TZH22]. Literature suggests auxetic materials to exhibit a higher

shear resistance [CL92] and an increased fracture toughness [CL96], that together

with the higher indentation resistance [AGS12] and increased energy absorption

[JH17] promise improved protection against impact events. The two basic prin-

(a) Re-entrant (b) Anti-chiral

Figure 1.1.: Example unit cells for two auxetic mechanisms.

ciples to achieve a negative Poisson’s ratio in an architected material is either by

inwards folding at the joints as see in the re-entrant honeycomb cell depicted in

Figure 1.1a, or by rotation of parts of the unit cell, as shown by the anti-chiral unit

cell depicted in Figure 1.1b.1 More auxetic unit cells and their deformation mechan-

isms are explained in Chapter 4. As this presentation is concerned with the effects

of the structure in a 2.5-dimensional setting,2 the focus is put on beam-based lattice

structures.

Impact events are a common occurrence across in vastly different scenarios.

From micrometeorites and space debris endangering satellites [PA99] over per-

sonal protective equipment in sports [San&al14] and protection against detonation

debris [Cro19] to metal roofs needing to withstand hail [SS19], all these events can

essentially be abstracted the same way: An impactor with a set velocity is colliding

1This illustration as well as all visualizations and the theme of this dissertation make use the batlow

colour scheme from scientific colour maps [Cra23].
2See physical samples in Chapter 5 for an illustration.
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Figure 1.2.: Abstraction of an impact event.

with a material layer of finite thickness fixed at the back side. This abstraction, illus-

trated in Figure 1.2, will serve as the fundamental model for this dissertation. Once

the impactor and the material layer are in contact, the material itself undergoes

high-rate compressive loading. These effects of large deformations at high rates in

an architected material have not yet been addressed systematically in literature.

To establish a systematic comparison of auxetic with non-auxetic metamaterials

is the goal of this dissertation. This results in the overarching research question

(and title of the thesis):

TITLE QUESTION

Are auxetics better for protection?

In order to answer this question, it is subdivided into three research questions,

that each contribute towards a better understanding of high-rate effects in architec-

ted materials.

1.1. COMPUTATIONAL MODELLING OF ARCHITECTED
METAMATERIALS

The assessment of different architectedmetamaterials for impact mitigation typically

involves high velocities and high amplitude forces. Conducting such experiments

in a physical testing location is challenging and requires large amounts of time and

monetary commitment. The physical experiments are additionally limited in the in-

sight they can give, since measurements can only be taken from the outside of the

material. Numerical experiments provide a way of performing different tests in a

comparatively fast and inexpensive manner, whilst at the same time being able to

provide more detailed insight into the internal material dynamics of the structure. It

is therefore crucial to develop a numerical model, that is both, complex enough to

capture relevant non-linearities in the material behaviour and at the same time as

inexpensive as possible to allow for fast experimentation with different configura-

tions. Such a model allows the researcher to investigate different architectures and

shed light on their differences, advantages and disadvantages. This dissertation is

focusing on metamaterials architected from beams forming lattice structures. Thus,

the first research question is formulated as:
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RESEARCH QUESTION #1

How can lattice structures be efficiently and accur-

ately modelled using numerical tools?

(a) Lattice (b) Unit cell (c) Beam

Figure 1.3.: Modelling of architected metamaterials as collection of beams.

To answer this question, the lattice structures are abstracted as a collection of

beams and the beams are modelled individually. An exemplary lattice as well as

the corresponding unit cell and beam are shown in Figure 1.3. These beams are

modelled as geometrically nonlinear Timoshenko-Ehrenfest beams, also known as

Simo-Reissner beams, geometrically exact beams or special Cosserat rods [Ant05;

Eug15; Rei81; Sim85]. The geometrical description of these beams is well-devel-

oped in the mechanics community and summarized in Chapter 2. Next to the kin-

ematic description of the deformation of the beams a description of the discretization

into a finite element (FE) model and the implementation in [JIVE] used for the in-

vestigations, following [CJ99; SV86], is given. The present implementation uses an

explicit time marching scheme with variable step size and finally considers contact

between the beams, as laid out in Chapter 2.

Besides these kinematic considerations, the material behaviour of the beams and

the corresponding kinetics have to be taken into account. During an impact event,

the material is expected to experience large deformations at high rates. Such de-

formations include severe inelastic non-linearities. These non-linearities stemming

from the behaviour of the constituting material in the architecture need to be ac-

counted for in the numerical model as well. Whilst the inclusion of the modelling

of inelastic behaviour into the description of the beams is as old as the descrip-

tion of the beams itself (e.g. [DC90; SHT84]), the adaptability of these models for

different scenarios is limited. More recently Smriti et al. [Smr&al18] developed a

thermodynamically consistent theory to describe the inelastic behaviour of beams.

Methods to acquire the plastic material constants for selected cross-sections have

been shown by Herrnböck, Kumar and Steinmann [HKS21; HKS22]. The plastic

material constants are, however, fitted for a single cross-section size and lack the

flexibility to model lattice architectures employing different material cross-sections.

In Chapter 3, a scaling strategy is developed and presented to augment the previ-

ously developed methods and make them feasible for the investigation of diverse

metamaterial architectures in impact scenarios.
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1.2. INFLUENCE OF THE POISSON EFFECT ON ENERGY
ABSORPTION

The fundamental question of this dissertation pertains to the performance of auxetic

metamaterials in impact scenarios for protection purposes. As the negative Poisson’s

ratio is—by definition—what sets auxetic materials fundamentally apart from other

structures, it is of paramount importance to investigate influence of the Poisson

effect during an impact event. These investigations are condensed first into the

following research question:

RESEARCH QUESTION #2

How does the Poisson effect influence energy ab-

sorption in architected materials?

Answering this question will allow not only for a better understanding of the impact

response of architected materials, but also will allow a critical assessment of the

fundamental arguments in favour of auxetics for impact mitigation.

From the plethora of investigations into auxetic metamaterials there are only

few, that critically compare the effects between structures or analyse the funda-

mental deformation of singular unit cells. Tatlıer [Tat22] compares different archi-

tectures, all showcasing a negative Poisson’s ratio, tuned to the same density. They

analyse the differences in energy absorption and collapse patterns of the patches

without commenting on the behaviour of singular unit cells. The collapse patterns

of patches made from architected materials are described in literature for different

unit cells (double arrowheads [Zha&al18], conventional honeycombs [Rua&al03], and

re-entrant honeycombs [Mer&al22]) without a comparison between different architec-

tures using the same material parameters or similar effective properties. Farshbaf,

Dialami and Cervera [FDC25] investigate the compressive and tensile properties

of both conventional and re-entrant honeycomb structures made from the same

material and using the same beams resulting in different effective properties.

In order to overcome the issue of comparability, distinct unit cell designs achieving

the same linear elastic properties for different material architectures are developed

in Chapter 4. An initially purely elastic investigation is conducted into these unit

cells determining the development of the stiffness properties of the unit cells under

compression and shear loading conditions. The observed changes in properties are

then related to the geometric effects seen throughout the deformation. Chapter 4

closes with a comparison of the effects of geometry on the elastic energy absorption

behaviour at different compression rates and an investigation into the effects of

lateral material on the elastic response of different architectures.

To also investigate inelastic material responses in a realistic setting, this study is

followed up by an experimental comparison between a single auxetic and a single

non-auxetic architecture in different configurations in Chapter 5. In this experi-

mental and numerical campaign the differences between a set of auxetic and non-

auxetic patches are investigated for both, a comparable mass and a comparable

stiffness.
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1.3. INFLUENCE OF THE POISSON EFFECT ON FORCE
TRANSMISSION

The forces transmitted through the metamaterial structure are, next to the absorp-

tion of the energy of the impactor, a crucial measure for the efficacy of a protective

layer. For a good protection, these forces should not exceed limits set by the fragility

of the material to be protected. In literature, there is not yet a systematic overview

regarding the transmission of forces through an architected material at high rates.

This gap in literature motivates the final research question:

RESEARCH QUESTION #3

How does the Poisson effect influence force trans-

mission in architected materials?

Chapter 5 investigates both the temporal and spatial distribution of forces on

the back side of the protective metamaterial for different Poisson’s ratios by a dis-

tinct set of architectures, designed to have either comparable mass or stiffness.

In Chapter 6, these investigations are supplemented by simulations of the material

behaviour under different strain rates. Includingmaterial non-linearities, it is demon-

strated, how the force levels differ between the two sides of the patch. The observed

differences in the force transmission through the various architectures and the effect

of different compression rates are attributable to the different observed patterns in

deformation of the structures. The differences seen in the deformation patterns are

related to the size of single unit cells and localized deformations are motivated by

static mechanisms and dynamic force concentrations. Whilst during static compres-

sion auxetic architectures show a stronger embrittlement for smaller unit cells due

to localized deformation, the investigated non-auxetic structure appears stronger

for smaller unit cells. During dynamic compression, a concentration of deformation

is observed adjacent to the edge that is subject to compressive loading (top edge in

Figure 1.2). These localized deformations are investigated both from a global force

level and for the local distribution of different types of energy. Chapter 6 closes with

a comparison between impact mitigation capabilities of the investigated structures.
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During their education, engineers invariably encounter beams as a foundational concept of mechan-

ics. Starting from simple rods that only deform in the axial direction, moving to Euler-Bernoulli beams,

considering bending but not shear, and finally, Timoshenko-Ehrenfest beams, which include shear

deformation, various concepts are introduced. All of these concepts are first taught in an infinitesimal

context, without consideration of any non-linearities, either geometric or material. Although starting

from simple concepts, they have been extended over the last century to include non-linearities while

maintaining the simplicity of a one-dimensional continuum. The following chapter will establish the

kinematic description of beam deformation and the numerical treatment that is employed throughout

the remainder of this dissertation.
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2.1. INTRODUCTION
Beams are used to describe structures that have a single predominant direction,

i.e. l � d where l represents the length of the beam and d a measure of the cross-

sectional size. The most common description of these beams is the Euler-Bernoulli

beam theory, which assumes, that a) the cross-section of the beam is infinitely

rigid in its own plane, b) the cross-section remains plane throughout the deforma-

tion, and c), the cross-section remains perpendicular to the centreline of the beam.

These assumptions do not allow the modelling of shear deformation or rotational

inertia, which become significant for fast and large deformations. Therefore, in this

work, assumption that the cross-section remains perpendicular to the centreline is

dropped, while keeping the notion of a plane, rigid cross-section. The resulting the-

ory is known as Timoshenko-Ehrenfest beam theory. In the following, the analytical

description of the beam as static one-dimensional continuum is laid out in Sec-

tion 2.2, followed by the description of beam contact kinematics in Section 2.3. The

chapter is then closed with an explanation of the time marching scheme employed

for the investigations in Section 2.4.

e1

e2

e3

x(s)

Λ(s)

x0(s)

Figure 2.1.: Beam undergoing large deformation.

2.2. BEAMS UNDERGOING LARGE DEFORMATIONS
The aforementioned Timoshenko-Ehrenfest theory is extended to nonlinear deform-

ation, resulting in nonlinear Timoshenko-Ehrenfest beams. These are also known

as Simo-Reissner beams (after [Rei81; Sim85]), geometrically exact beams, or spe-

cial Cosserat rods [Ant05; Eug15]. The following deliberations on the beam con-

figuration follow Antman [Ant05] and Eugster [Eug15]. For a deeper mathematical

treatise the reader is also referred to Rubin [Rub00]
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2.2.1. ANALYTICAL DESCRIPTION OF THE BEAM
A schematic showing the concept is given in Figure 2.1. A beam is described with

the centreline x(s), where s ∈ [s0, s1] is the measure along the length of the beam,

with two orthonormal directors attached to it d1(s),d2(s). A third director is intro-

duced orthogonal to the first two d3(s) = d1(s) × d2(s). These three orthonormal

directors may be viewed as the column vectors of a matrix, which represents the

rotation between the global reference frame and the local coordinate frame of the

beam:

Λ(s) = di(s)⊗ ei =
[
d1(s) d2(s) d3(s)

]
. (2.1)

This rotation represents the orientation of the rigid cross-section of the beam at a

point along the centreline of the beam x(s). To account for extension and shear of

the beam, the centre line is described as a sum of the centreline in the undeformed

configuration x0 and a deformation u according to

x(s) = x0(s) + u(s). (2.2)

The description of the total deformation as a mapping from the length coordinate to

the current position as well as rotation is given by

s 7→ (Λ,x) R 7→ SO(3)× R3. (2.3)

One can express the translational strain-prescriptors (shear, extension) γ(s) as well
as rotational strain-prescriptors (bending, torsion) κ(s) with the given deformations

and rotations in the global frame of reference as:

γ(s) = x′(s)− d3(s), (2.4)

κ̃(s) = Λ′(s)ΛT (s), (2.5)

where (̃·) denotes the skew symmetric matrix with associated axial vector and (·)′
the derivative with respect to s. The strain-prescriptors in the material frame (Γ(s)
for the translational part, K(s) for the rotational part) are expressed as:

Γ(s) = ΛT (s) (x′(s)− d3(s)) , (2.6)

K̃(s) = ΛT (s)Λ′(s). (2.7)

In order to calculate the stress-resultants, a general function relating material strain-

prescriptors to material stress-resultants (N(s) for the translational parts andM(s)
for the rotational parts) is assumed to exist:[

N(s)
M(s)

]
= f

({
Γ(s)
K(s)

})
. (2.8)

This constitutive model will be detailed in Chapter 3. The resulting stress-resultants

are then transformed back to the inertial frame of reference, denoted again by lower

case symbols (n(s), m(s)):

n(s) = Λ(s)N(s), (2.9)

m(s) = Λ(s)M(s). (2.10)
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2.2.2. DISCRETIZATION OF THE BEAM
The discretization of the beam into finite elements, as proposed by Simo and Vu-

Quoc [SV86] and subsequent improvements due to Crisfield and Jelenić [CJ99],

are laid out in the following. Initially, the displacement u(s) is interpolated using

standard Lagrangian shape functions Li:

u(s) ≈ u?(s) =
∑
i

Li(s)ui. (2.11)

Here and in the following the superscript (·)? refers to the discretized, interpolated

quantities. The orientation of the cross-section is then interpolated using spherical

interpolation as proposed by [CJ99]. For this interpolation, a central rotation Λr is

found as

Λr = Λi exp (0.5 logΛ
T
i Λj), (2.12)

where Λi denotes the rotation at the node on one side and Λj at the node on the

other side the centre of the element. Here, log refers to the operation that maps a

rotation matrix, that is part of the special orthogonal group SO(3), to an element of

the corresponding Lie-algebra so(3). This can be interpreted in the context of rota-

tion as the skew symmetric matrix associated with the rotation vector representing

the rotation between the two central nodes. By multiplying half of this rotation vector

again with the rotation of the first node, the overall central rotation is obtained. For

elements with an odd number of nodes the result is simply Λi = Λj = Λr. Then for

every node the corresponding (local) rotation vectors Φi are computed using the

same matrix logarithm as

Φ̃i = log
(
ΛT

r Λi

)
, (2.13)

where again (̃·) represents the skew symmetric matrix. These local vectors are

interpolated using the same standard Lagrangian shape functions used for the dis-

placements:

Φ(s) ≈ Φ?(s) =
∑
i

Li(s)Φi. (2.14)

At each point along the centre line, one can reconstruct the rotation by simple con-

secutive rotation of the local rotation followed by the reference rotation as

Λ(s) ≈ Λ?(s) = Λr exp Φ̃
?
(s). (2.15)

From these interpolated kinematic properties, one can construct the strain-pre-

scriptors and stress-resultants at every quadrature point as described in Equa-

tions (2.4) to (2.8).

For brevity the dependency on s is not spelled out explicitly in the following. Start-
ing from the static equilibrium equations along the beam with the external transla-

tional line load next and the external rotational line load mext:

n′ = next, (2.16)

m′ + n× x′ = mext, (2.17)
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the virtual work can be computed by multiplying these equations with an arbitrary,

but admissible variation in the displacements δu as well as in the rotations δϑ:

δW =

∫ s1

s0

[(next − n′) · δu+ (mext −m′ − n× x′) · δϑ] ds. (2.18)

For a static solution procedure, which tries to find a point where the virtual work

vanishes for any admissible variation by applying a Newton-Raphson scheme, one

needs to calculate the unbalanced forces first. This is done for every element e
by numerically computing the internal force integral collecting the contributions of

every node i:

fe,i
int =

∫
e

Ξi

[
n
m

]
ds, (2.19)

with

Ξi =

[ L′
i1 0

−Lix̃?′ L′
i1

]
. (2.20)

Where 1 denotes the 3 × 3 identity matrix and O a 3 × 3 zero matrix. It should

be noted, that these integrals are numerically integrated by reduced integration in

order to prevent shear locking. These individual contributions to the global internal

force vector fint are subsequently assembled using standard FE procedures (see

e.g. [Bat06; Sch99]), with A denoting the assembly operator:

fint =A
e,i

fe,i
int . (2.21)

With the (nodal) external forces fext =
[
next mext

]T
given by the boundary condi-

tions they result in the out-of-balance force vector fres:

fres = fext − fint. (2.22)

Subsequently, the tangent stiffness matrix is computed as well. This can be done

by differentiating the internal force components with respect to the displacements.

In a discrete scheme, the stiffness contributionsKe,ij can be additively split into the

contributions of the symmetric material stiffness Se,ij and a non-symmetric geomet-

ric stiffness contribution T e,ij :

Ke,ij = Se,ij + T e,ij . (2.23)

The symmetric contribution is computed from the material tangent stiffness C de-

fined in Chapter 3 as

Se,ij =

∫
e

ΞiΠiCΠT
j Ξ

T
j ds, (2.24)

with

Πi =

[
Λi 0
0 Λi

]
, (2.25)
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and the geometric contribution is computed as

T e,ij =

∫
e

Ψ?
iB

?Ψ?
j
T
ds, (2.26)

with

Ψ?
i =

[
L′
i1 0 0
0 L′

i1 Li1

]
(2.27)

and

B? =

 0 0 −ñ?

0 0 −m̃?

ñ? 0 n? ⊗ x?′ −
(
n? · x?′

)
1

 . (2.28)

After the tangent stiffness and the internal force vector are assembled, the system

is solved.

NUMERICAL BENCHMARKS
In order to verify the implementation done using [JIVE], selected results from liter-

ature were re-implemented and compared with the custom implementation.

Convergence As a first test, the quadratic convergence behaviour of the algorithm

is confirmed comparing it to Example 7.1 from [SV86]. In this example a cantilever is

subjected to pure bending by applying a moment at the free end, the beam is set

to have the unitless bending stiffness EI = 2 and be of unit length. The moment is

chosen so that the beam curls up twice (M = 8π). The test is conducted using 5

linear elements. The minor differences in Table 2.1 for the numerical values of the

Table 2.1.: Residuals for the bent cantilever.
Iteration Simo and Vu-Quoc [SV86] This implementation

0 0.251 × 102 0.251 × 102

1 0.425 × 102 0.283 × 102

2 0.441 × 10−13 0.691 × 10−13

residual are attributed to differences in nearly 4 decades of changes in hard- and

software. The configuration and the deformed beam can be seen in Figure 2.2.

0, 5 1 2 3 4 5

1

2 3

4

M = 8π

Figure 2.2.: Twice rolled up beam with 5 linear elements [SV86].
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Ability to model complex deformation To showcase the abilities of the imple-

mentation, Example 7.5 from [SV86] is implemented and compared with the repor-

ted results. This example shows the loading of a cantilever, bent by 45° with a

radius of 100m, in the third direction. The material parameters are taken to be

E = 107 Pa, G = 5 × 106 Pa, A = 1m, I = 0.083m41 and the system is mod-

elled with 8 linear elements. The setup for this test can be seen in Figure 2.3. In

Figure 2.4 the excellent agreement between the custom implementation and the

reported results from literature can be seen. Minor differences may be attributed to

the limited resolution available in the literature graphs. The curves were extracted

using the WebPlotDigitizer [WPD].

F

70.71m

29.29m

y

x

z

Figure 2.3.: Depiction of the test configuration and loading conditions.

0 0.5 1 1.5 2 2.5 3

0

50

Load (kN)

D
is
p
la
c
e
m
e
n
t
(m

)

dx dx dy dy dz dz

Figure 2.4.: Load-deflection curves for a curved beam under a point load. Solid

lines depict this work, dotted lines the reference [SV86].

2.3. BEAMS IN CONTACT
The following section describes two beams in contact according to the work of Wrig-

gers [Wri06].

1See Chapter 3 for details and explanation of the material modelling.



2.3. Beams ın contact

2

21

2.3.1. ANALYTICAL DESCRIPTION OF CONTACT
Two beams a, b, with radii ra, rb are in contact if the gap function g at x(sa) and
x(sb) is negative:

g = |x(sa)− x(sb)| − ra − rb. (2.29)

For description of the behaviour of two bodies in contact, two options exist which

are widely discussed in literature. On the one hand, one can introduce Lagrangian

multipliers. Lagrangian multipliers ensure no interpenetration and serve as repres-

entation for the contact forces effected from the contact. They increase the size of

the discretized system, and are therefore not considered for this work. On the other

hand, penalty parameters provide a solution to the contact problem, that simply

adds new terms to the force computations without increasing the overall number of

variables for any implementation. Penalty parameters introduce the contact force

fcon as a function of the gap, which is assumed linear for the remainder of this work

fcon =

{
εg, if g < 0

0, otherwise
, (2.30)

with the penalty parameter ε needing to be chosen carefully. The numerical imple-

mentation of the contact is laid out in the following.

2.3.2. NUMERICAL IMPLEMENTATION OF CONTACT
CONTACT SEARCH
As the number of possible contact pairs between the elements increases quadrat-

ically with the number of elements, the search for the contact is implemented in a

staggered three-step scheme:

Coarse, beam-level search First, in a lattice with many beams, the beams are

checked for potential contact between them. To this end, the boxes spanning two

beams are computed, resulting in two corners at the minimum and maximum co-

ordinates for each beam a and b in the pairing:

xcoord
min,a, xcoord

max,a, and xcoord
min,b , xcoord

max,b. (2.31)

These boxes are now extended by the radii of both beams

xmin,a = xcoord
min,a −

rara
ra

 , xmax,a = xcoord
max,a +

rara
ra

 , likewise for b, (2.32)

after which, it can be computed, whether there is any intersection between those

two boxes by simple geometric operations. The construction of these boxes is visu-

alized for an example in Figure 2.5. The beams are in potential contact, if for every

coordinate xk, k = 1, 2, 3 the following condition is fulfilled:(
xk
max,a >= xk

min,b

)
∧
(
xk
max,b >= xk

min,a

)
. (2.33)

If the beams a, b are found to be in potential contact, they are added to a list of beam
pairings to be investigated in the next step.



2

22 2. Beam kınematıcs and theır numerıcal descrıptıon

x1

x2

xcoord
min,b

xmin,b

xcoord
max,b

xmax,b

xcoord
min,a

xmin,a

xcoord
max,a

xmax,a

Figure 2.5.: Schematic illustration of the coarse, beam-level search.

Coarse, element-level search For each of those pairings, the search is refined

on the element level, and again boxes spanning element i of the beam a and an

element j of beam b are computed as described above for entire beams. Here, the

algorithm is employed to fill a list with potential pairs of elements in contact. For

these pairs a finer computation determining the contact point is then started.

Fine, element-level search In the computations performed in this work, only lin-

ear elements are used for contact computation. Therefore, the following deliber-

ations depend crucially on the representation of the elements by simple lines in

space. Using local coordinates, element i, with its nodal position vectors x1
i ,x

2
i , is

described using the local coordinate ξi:

x(ξi) =
1

2
(1− ξi)x

1
i +

1

2
(1 + ξi)x

2
i . (2.34)

Element j is described similarly,

x(ξj) =
1

2
(1− ξj)x

1
j +

1

2
(1 + ξj)x

2
j . (2.35)

Following now [WZ97], the values of ξconi and ξconj for the point of the closest ap-

proach of the two lines are computed:

ξconi = − (bj − bi) ·
tj (tj · ti)− ti (tj · tj)

(tj · tj) (ti · ti)− (tj · ti)2
,

ξconj = (bj − bi) ·
ti (tj · ti)− tj (ti · ti)

(tj · tj) (ti · ti)− (tj · ti)2
,

(2.36)

with b = x2−x1 and t = x2−x1. Using these calculated values, the actual contact

computation is performed.

CONTACT COMPUTATION
Based on the results for ξconi , ξconj from the last step of the contact search, different

contact algorithms are employed.
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Closest approach within both elements In the simple case, when the closest

distance of the lines is within both elements, i.e.

ξconi ∈ [−1, 1] ∧ ξconj ∈ [−1, 1] , (2.37)

point-wise contact between the two beams is assumed and the algorithms from

Wriggers and Zavarise [WZ97] for a segment-to-segment contact are employed.

The gap for this contact is computed from the two positions directly

g = xcon
i − xcon

j , g = |g| − ri − rj , (2.38)

with the contact normal as

n̂ =
g

|g|
. (2.39)

For this segment-to-segment contact, the force contribution is computed as

fcon =


f i1
con

f i2
con

f j1
con

f j2
con

 = εSTS〈g〉1H̃T · n̂, (2.40)

with the segment-to-segment penalty εSTS and

H̃ =
[
−Lcon

i,1 1 −Lcon
i,2 1 Lcon

j,1 1 Lcon
j,2 1

]
. (2.41)

The contact stiffness contribution is computed using the abbreviation

Ĥ =

[
Lcon
i,1 1 Lcon

i,2 1 0 0
0 0 Lcon

j,1 1 Lcon
j,2 1

]
, (2.42)

and with the matrices

Ā =

[
−xcon

i
′ · xcon

i
′ xcon

j
′ · xcon

i
′

−xcon
i

′ · xcon
j

′ xcon
j

′ · xcon
j

′

]
, (2.43)

B̄ =

[
xcon
i

′T −xcon
i

′T

xcon
j

′T −xcon
j

′T

]
, (2.44)

C̄ =

[
−xcon

i
T − xcon

j
T 0

0 xcon
i

T − xcon
j

T

]
, (2.45)

D̄ =
[
Ā−1

(
B̄Ĥ + C̄Ĥ ′

)]
=

[
dii dij

dji djj

]
, (2.46)

Ē =

[[
−Lcon

i,1
′1 −Lcon

i,2
′1
]T

n̂
[
dii dij

][
Lcon
j,1

′1 Lcon
j,2

′1
]T

n̂
[
dji djj

] ] , (2.47)
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and

G1 = H̃T +
[
dji djj

]T
x′
j
T −

[
dii dij

]T
x′
i
T
, (2.48)

G2 = 1 − n̂n̂T , (2.49)

G3 = H̃ +
[
dji djj

]
x′
j −

[
dii dij

]
x′
i, (2.50)

Ḡ =
G1G2G3

g
, (2.51)

as

Kcon =


Ki1i1

con Ki1i2
con Ki1j1

con Ki1j2
con

Ki2i1
con Ki2i2

con Ki2j1
con Ki2j2

con

Kj1i1
con Kj1i2

con Kj1j1
con Kj1j2

con

Kj2i1
con Kj2i2

con Kj2j1
con Kj2j2

con

 = ε
(
H̃T n̂n̂T H̃ + g

(
Ē + ĒT + Ḡ

))
.

(2.52)

The superscripts i1,2, j1,2 correspond to the degrees of freedom (DOFs) for the first

and second node of the element pair i and j.

Closest approach within one element In the case, when the point of the closest

approach is contained within one element but outside the other element, i.e.

ξconi ∈ [−1, 1]⊕ ξconj ∈ [−1, 1] , (2.53)

initially, it is checked which end of the non-included beam is closer to the included

beam. For the remainder of this explanation, it is assumed, that the closest ap-

proach is within element i (ξconi ∈ [−1, 1]), but outside element j (ξconj 6∈ [−1, 1]).
By simple exchange of the indices, the same procedure may also be employed

for the case with ξconi 6∈ [−1, 1] and ξconj ∈ [−1, 1]. For the further computation a

non-symmetric contact formulation, which is based on the two-dimensional node-to-

segment discretization from [WS85], is employed. In a first step, the end of element

j, that is taking the role of the secondary node xs
j is determined

xs
j =

{
x1
j , for ξconj < −1

x2
j , for ξconj > 1

. (2.54)

The next step is to calculate the closest point ξmi on the main element i to this node
xs
j to ensure orthogonality on the segment for the contact using

ξmi =
2
(
xs
j · ti

)
− (ti · bi)

(ti · ti)
(2.55)

If this point is outside the element ξmi 6∈ [−1, 1] no contact is found, and the al-

gorithm is terminated for this pairing. Otherwise, with the contact position on the

main element xm
i = x(ξmi ), and the contact normal n̂ =

(
xs
j − xm

i

)
/
∣∣xs

j − xm
i

∣∣,
three matrices are constructed:

N̂s =

 n̂
− 1

2 (1− ξmi ) n̂
− 1

2 (1 + ξmi ) n̂

 , Ts =

 ti
− 1

2 (1− ξmi ) ti
− 1

2 (1 + ξmi ) ti

 , N̂ =

00
n̂

 . (2.56)
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Using these matrices, the nodal forces as well as the stiffness contributions can be

computed with the independent node-to-segment penalty parameter εNTS as

fcon = εNTS〈g〉1N̂s, (2.57)

Kcon = εNTS〈g〉0N̂s ⊗ N̂s −
〈g〉1

|ti|

(
N̂ ⊗ Ts + Ts ⊗ N̂ +

〈g〉1

|ti|
N̂ ⊗ N̂

)
. (2.58)

With the nodal indices sorted for the superscript s as secondary node and m1,2 for

the two nodes of the main element:

fcon =

fs
con

fm1
con

fm2
con

 , (2.59)

Kcon =

Kss
con Ksm1

con Ksm2
con

Km1s
con Km1m1

con Km1m2
con

Km2s
con Km2m1

con Km2m2
con

 . (2.60)

Closest approach outside both elements In the case, when the point of the

closest approach is outside both elements, i.e.

ξconi 6∈ [−1, 1] ∧ ξconj 6∈ [−1, 1] , (2.61)

again, a node-to-segment contact is assumed. For all four nodes potentially in-

cluded in this contact, the algorithm described in the previous paragraph is em-

ployed, i.e. four potential contacts are computed.

JOINT CONTACT
Besides the contact between different structural members of the truss, also contact

between joints, i.e. end-points of the beams is implemented. For this a simple con-

tact formulation between two spheres with a radius equivalent to that of the beams

is used. For every pair of nodes representing joints i, j, the gap is defined as

g = |xi − xj | − ri − rj . (2.62)

The corresponding force is again defined with the independent node-to-node pen-

alty εNTN as

fcon = εNTN〈g〉1, (2.63)

and is added to the nodal forces of the joints in a straightforward manner

f i
con = fconn̂, f j

con = −fconn̂, (2.64)

with the contact normal defined as

n̂ =
xi − xj

|xi − xj |
. (2.65)
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The transformation matrix from the local system of the contact to the global system

can be defined as the dyadic product of the normal vector as

Tcon = n̂⊗ n̂, (2.66)

and the stiffness contributions can then be written in compact form as

Kcon =

[
Kii

con Kij
con

Kji
con Kjj

con

]
=

[
εNTNTcon −εNTNTcon

−εNTNTcon εNTNTcon

]
(2.67)

ASSEMBLY
Finally, all contact contributions can be assembled into the global force vector

fres = fext −A
e,i

fe,i
int −A

c,i

f c,i
con, (2.68)

where the assembly operation for the contact is iterating over the contacts c and
nodes i as opposed to the elements e and nodes i for the internal force vector.

Similar procedures are employed for the global tangent matrix.

NUMERICAL BENCHMARK
To ensure the correct implementation of the contact algorithm, a comparison with

Example 2 from [ZW00] is undertaken. In this case, two circular beams are modelled

using two node linear elements. The horizontal beam is 14 units long, the vertical

one 10 units and the distance between the centrelines is 1 unit. The geometric

configuration can be seen in Figure 2.6. The material is assumed to be elastic

with E = 108 and ν = 0.2 The area and moments of inertia are assumed to be

A = 4 × 10−2, I = 2 × 10−4 and the contact radius is taken to be r = 0.2. The

contact parameters for beam contact are set be εSTS = εNTS = 104. The horizontal

x

y

z

10

10
14

ux
uz

(a) Setup

xy

z

(b) Deformation

Figure 2.6.: Setup of Example 2 from [ZW00] and deformed configurations of the

beams at different steps. Colours correspond to the steps in Figure 2.7.

beam is free at the left end and a movement of uz = 0.3 per step and ux = 0.03 per

2See Chapter 3 for details and explanation of the material modelling.
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step are imposed on the right end. The vertical beam is clamped at both ends. The

simulation is run for 6 steps. The setup for the simulation is visualized in Figure 2.6a

and the deformation of the beams for different steps is presented in Figure 2.6. We

0 1 2 3 4 5 6
0

20

40

60

Step

L
o
a
d

Figure 2.7.: Load-deflection curves for two beams in (frictionless) contact. Solid

lines depict this work, dotted lines the reference [ZW00].

can see the good agreement between the present implementation and the results

in literature in Figure 2.7, where the contact force per loading step is depicted.

2.4. ADAPTIVE TIME MARCHING
The methodology discussed so far is for static problems, but impact events consist

not only of large but also of fast deformations. Thus, the implementation also needs

to be able to represent dynamic effects. For this work a simple predictor-corrector

approach with step size control is implemented to accommodate dynamic loading

and is presented in the following.

The second order differential equation system describing the motion of the beam

is,
next − n′(s) = ρAẍ(s),

mext − (m′(s) + n(s)× x′(s)) = Θ(s)ω̇(s) + ω(s)×Θ(s)ω(s),
(2.69)

withΘ denoting the rotational inertia of the rigid cross-section and a superimposed

dot representing time derivatives. This is discretized for the FE system as[
ü
ω̇

]
=

[
M 0
0 Θ

]−1([
next

mext

]
−
[

n′

m′ + n× x′

]
−
[

0
ω ×Θω

])
, (2.70)

and transformed into a first order system by introducing the velocities (translational

velocity v and angular velocity ω) as additional state variables:
v̇
ω̇
u̇

Λ̇

 =


[
M 0
0 Θ

]−1

(fext − fint − fgyro − fcon)[
v
ω̃Λ

]
 . (2.71)
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The translational part of the inertia matrix M is consistently assembled, while the

rotational part Θ is lumped at each node resulting in the equivalent of a rigid body

(with regard to the rotational DOFs) at each node. It should also be noted, that the

angular velocity is not equal to the derivative of the rotation vector, as the latter is

only a numerical representation of rotation Λ ∈ SO(3). Also, the gyroscopic force

vector fgyro is defined and added to the resulting dynamic forces fres:

fgyro =

[
0

ω ×Θω

]
,

fres = fext − fint − fgyro − fcon.

(2.72)

In this work, the predictor-corrector scheme was accompanied by adaptive time

stepping using a Milne-Device3 as estimator for the error. A pair of explicit and

implicit Euler schemes as predictor-corrector pair is chosen for simplicity. In the

prediction step, the state variables are updated with time step ∆tn according to the

explicit Euler rule, where the resulting force vector is assembled as described in the

previous sections:[
vp
n+1

ωp
n+1

]
=

[
vn

ωn

]
+∆tn

([
Mn 0
0 Θn

]−1

· fres,n

)
,[

up
n+1

Λp
n+1

]
=

[
un +∆tnvn

exp (∆tnω̃n) ·Λn

]
.

(2.73)

The integration of the rotational displacements is done using an exponential in-

tegrator (see e.g. [Mun15]).

The forces associated with the predicted values fp
res,n+1 are computed and then

used in the corrector step using the implicit Euler rule:[
vc
n+1

ωc
n+1

]
=

[
vn

ωn

]
+∆tn

([
Mn 0
0 Θn

]−1

· fp
res,n+1

)
,

[
uc
n+1

Λc
n+1

]
=

[
un +∆tnv

p
n+1

exp
(
∆tnω̃

p
n+1

)
·Λn

]
.

(2.74)

Next, in order to obtain an estimate for the error introduced by the time stepping, the

results of the predictor stage and the results of the corrector stage are compared

and used to compute an estimation for the current error eest:

eest =

∥∥∥∥[l−1
0

0

]
·
([

up
n+1

ϑp
n+1

]
−
[
uc
n+1

ϑc
n+1

])∥∥∥∥
√
ndof

+∆tn

∥∥∥∥[l−1
0

0

]
·
([

vp
n+1

ωp
n+1

]
−
[
vc
n+1

ωc
n+1

])∥∥∥∥
√
ndof

.

(2.75)

3Named after Milne [Mil26], the error is estimated by comparing the leading terms of the local truncation

error of two different methods of the same order
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Here the translational DOFs are scaled with the inverse size of the typical critical

length scale of the problem l0. For example in the case of contact it is set to one

tenth of the contact radius, i.e. l0 = rcon
10 . Using this estimated error the next step

size is computed to result in a desired error of etol:

∆toptn = ∆tn
2

√
etol

0.5eest
. (2.76)

Based on the estimated error it is also decided whether to accept the current step.

The step is accepted if eest < etol or if the step was calculated with the minimal step

size ∆tn = ∆tmin. If the solution is accepted the step size for the following step is

determined by

∆tn+1 = max
(
min

(
rsafe∆toptn , rincr∆tn,∆tmax

)
, rdecr∆tn,∆tmin

)
, (2.77)

where rsafe < 1 is the safety factor for the optimal step size, rdecr < 1 the decrease

factor and rincr > 1 the increase factor from the current step size. If the step is not

accepted, the solution is rejected and the step is restarted with a smaller step size

determined from

∆trepn = max
(
rsafe∆toptn , rdecr∆tn,∆tmin

)
. (2.78)

The next step is then calculated with the same procedure, starting again at Equa-

tion (2.73).

NUMERICAL BENCHMARK
In order to ensure correct implementation of the algorithm, it is benchmarked against

Example 5.2 from [SV88]. In this benchmark, an angled cantilever beam is loaded for

a short period at the elbow and left swinging freely. The initial time step size was

set to ∆t0 = 10−5 s with a desired error of etol = 10−4. The material properties are

without units set such, that kGA = EA = 106 and EI = GJ = 103 are resulting for

the static properties and A% = 1, I% = 10, and J% = 20 for the dynamic properties.4

The legs of the beam are each 10 units long, and the beam is discretized using 10

quadratic elements per leg. A load F is applied at the elbow in z-direction, that is
linearly rising over to first second up to a value of 50 and linearly falling again to

reach 0 at t = 2 s. A top view of this setup is shown in Figure 2.8a. The movement

of the beam over 30 s can be seen in Figure 2.8b. We can see a good agreement

between the present implementation and the results in literature in Figure 2.9. The

minor differences may be again explained by the software used to acquire the data

from the limited resolution in the graphs of [SV88].

4See Chapter 3 for details and explanation of the material modelling.
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Figure 2.8.: Setup and deformed configurations of the angled cantilever beam

swinging at time steps t = 0 s, 5 s, 10 s, 15 s, 20 s, 25 s and 30 s.

0 5 10 15 20 25 30
−10

−5

0

5

10

Time (s)

D
is
p
la
c
e
m
e
n
t
(m

)

elbow tip elbow tip

Figure 2.9.: Displacement in loading direction over time for the elbow and tip of the

system. Solid lines depict this work, dotted lines the reference [SV88].
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A yield function in the stress-resultant space of geometrically exact beams based on the elastoplastic

cross-sectional warping problem has been proposed by Herrnböck, Kumar and Steinmann (2021).

This plasticity framework has been extended with a hardening tensor to model the kinematic hardening

effects in Herrnböck, Kumar and Steinmann (2022). While this framework provides scaling for the

yield surface in ideal plasticity, scaling in hardening plasticity has not yet been explored. This chapter

focuses on the numeric modelling of hardening beams and beam assemblies at different geometric

scales. Discretization effects from the introduction of plasticity into the geometrically exact beam

model are demonstrated. Furthermore, the effects of scaling are explored, and a method to mitigate

undesirable effects in order to achieve a size-agnostic formulation is proposed. Consistent geometric

scaling is demonstrated for two alternative scaling approaches of the yield function.

this chapter is integrally extracted fromT. Gärtner, S. J. van den Boom, J. Weerheijm and L. J. Sluys. ‘A

strategy for scaling the hardening behavior in finite element modelling of geometrically exact beams’.

Comput. Mech. 75 (2025), pp. 1471–1482

https://doi.org/10.1007/s00466-024-02572-3
https://doi.org/10.1007/s00466-024-02572-3
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3.1. INTRODUCTION
Beams undergo large, plastic deformations in various applications, such as the

weaving of chain-link fences, the production of paper clips, or the crushing of archi-

tected lattice materials. The latter are man-made structures in demand for a wide

range of applications, from sports equipment to protective systems in a military con-

text [Cro19; SDC16; TZH22]. These lattice materials, can be seen as a collection of

beams, and are represented accordingly in an FE context. In the given applications,

metal lattices undergo large deformations that may include material non-linearities.

In order to design such materials, a proper representation of the beams undergoing

large deformations with the corresponding inelastic material behaviour is required.

The representation of beams undergoing large deformations with elastic material

behaviour following the Simo-Reissner (after [Rei81; Sim85]) beam theory is well

established as laid out in Chapter 2.

Irreversible deformation of the beam structures, i.e., plasticity, is not considered

in these formulations. When including plasticity into the beam models, one has

two options: The plastic deformation can be concentrated at distinct cross-sections

throughout the beam, or it can be distributed over the entire beam. The first ap-

proach corresponds to so-called plastic hinges, represented by strong discontinuities

along the beam and thus introduced as such into the FE model [TJ21; Toj&al23].

The second approach is to introduce plasticity into the description of the beam-type

strain-prescriptors itself. Smriti et al. [Smr&al18] present a thermo-elasto-plastic for-

mulation for such an approach, with an FE implementation described in [SKS20].

A similar approach is taken by Weeger et al. [Wee&al23], where a formulation for

elasto-visco-plastic beams is presented in an isogeometric framework. The intro-

duction of plasticity into the strain-prescriptors of the beam is closest to traditional

continuum plasticity and straightforward to be implemented in an existing frame-

work, as no changes in the geometric representation are required. One problem

not solved in these approaches is, however, the determination of a yield criterion

for the formulation at hand. This issue could be relegated back to the material scale

by introducing a subintegration across the cross-section in each integration point of

the beam element, as presented in [Kar&al23]. This approach is also used in most

commercial FE codes.

For the purpose of this investigation, a yield surface in the six-dimensional stress-

resultant space is chosen, in order to ensure fast computation. Early approaches to

this are limited to simple deformations and do not include any hardening behaviour

of the material [DC90; SHT84]. More recently, Herrnböck, Kumar and Steinmann

[HKS21] formulate an approach to systematically determine the yield surface using

the formulation of [SKS20; Smr&al18] for a given cross-section and material model,

based on simulations of the cross-section on the material scale. The procedure

is demonstrated with a J2-plasticity model for a generic steel in beams with circu-

lar and square cross-sections. The authors also demonstrate the geometric scal-

ing behaviour of the resulting yield surface. This can be motivated based on the

fact, that the beam-type stress-resultants are essentially cross-sectional forces and

moments. They extend their approach to kinematic hardening in [HKS22] for the

circular cross-section without considering geometric scaling. The extension demon-
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strates a good agreement with a FE2 approach utilizing the identical plasticity model

in their test cases. The discrepancies observed can be attributed to the fact that,

in the stress-resultant approach, the entire cross-section plastifies simultaneously,

whereas in reality a more gradual plastification process occurs [HKS22]. It is shown

how the kinematic hardening tensor is a full matrix and that it relates to microscale

isotropic hardening, that is assumed for the underlying material behaviour. The

geometric scaling of hardening plasticity in beam formulations has not been invest-

igated so far in literature. However, it is of paramount importance for the targeted

design of lattice materials structures exposed to severe straining.

In this chapter, the geometric scaling behaviour of the kinematic hardening formu-

lation fromHerrnböck, Kumar and Steinmann [HKS22] is investigated. An adequate

scaling approach to be used in the design process of lattice structures represent-

ing metal metamaterials undergoing large inelastic deformations for the remainder

of this dissertation is introduced. In Section 3.2 the theoretical background for the

investigations is laid out, followed by a mesh convergence study in Section 3.3.

The extent of the geometric scaling in the existing formulation, not considering the

hardening tensor, is demonstrated in Section 3.4 using a simple bending cantilever

together with its limitations, followed by the proposal to mitigate this effect. In Sec-

tion 3.5 it is demonstrated, how to apply the proposed strategy to different yield

functions, and the results in a three-dimensional setting are presented.

3.2. THEORETICAL BACKGROUND
The following treatise extends the geometric description of the geometrically exact

beam given in Chapter 2 by incorporating the material behaviour in the laid out

framework.

Summarizing the material strain-prescriptors Γ,K in E =
[
Γ K

]T
, their initial,

elastic relation to the material stress-resultantsN ,M , summarized asΣ, is usually

described using the following formula:

Σ =

[
N
M

]
= C

[
Γ
K

]
= CE, (3.1)

where the material stiffness matrix C already introduced earlier, in the context of

point-symmetric cross-sections showing homogeneous, isotropic material distribu-

tions, is expressed using the engineering constants E as the Young’s modulus, G
as the shear modulus, A as the area of the cross-section, I1, I2 as the area mo-

ments of inertia in the directions of the directors d1,d2, J as the polar moment of

inertia, and k as the shear correction coefficient:

C =


kGA 0 0 0 0 0
0 kGA 0 0 0 0
0 0 EA 0 0 0
0 0 0 EI1 0 0
0 0 0 0 EI2 0
0 0 0 0 0 GJ

 . (3.2)



3.2. Theoretıcal background

3

39

It should be mentioned here, that this material stiffness matrix implicitly scales with

changes in the geometry, as the area and its second moments are defined using the

geometry of the cross-section. This implicit scaling refers to the fact that the terms

do not have a geometric scaling factor explicitly present in their analytical definition,

but are naturally adapted based on the geometry. For instance, the area A = πr2 is
not defined by a scaling factor, but it is defined by the radius r, which is assumed to

be scaled with the rest of the geometry. The stress-resultants are again expressed

in the inertial frame of reference, using lower case symbols σ =
[
n m

]T
:

n = ΛN , (3.3)

m = ΛM . (3.4)

While the description thus far is purely elastic, beams undergoing large deform-

ations are expected to exhibit inelastic behaviour. This inelastic behaviour must be

captured in the numerical description as well. Here, we focus our attention on the

description of kinematic hardening plasticity in the six-dimensional stress-resultant

space of a beam, following [HKS21; HKS22; Smr&al18].

First, the strain-prescriptors are additively decomposed into elastic and plastic

parts as in [Smr&al18]:

E = Ee + Ep. (3.5)

Using this decomposition, we can introduce the Helmholtz energy density Ψ from

[Smr&al18]:

Ψ =
1

2
EeTCEe +

1

2
MTHM, (3.6)

with the invertible, symmetric, constant 6 × 6 hardening tensor H and the internal

hardening variables M =
[
MΓ

1 MΓ
2 MΓ

3 MK
1 MK

2 MK
3

]T
. Furthermore,

the yield function in the stress-resultant space as proposed in [HKS22] is introduced

as

Φ =

∣∣∣∣ N1

Ny
1 −Nh

1

∣∣∣∣αN
1

+

∣∣∣∣ N2

Ny
2 −Nh

2

∣∣∣∣αN
2

+

∣∣∣∣ N3

Ny
3 −Nh

3

∣∣∣∣αN
3

+

∣∣∣∣ M1

My
1 −Mh

1

∣∣∣∣αM
1

+

∣∣∣∣ M2

My
2 −Mh

2

∣∣∣∣αM
2

+

∣∣∣∣ M3

My
3 −Mh

3

∣∣∣∣αM
3

− 1 ≤ 0. (3.7)

The hardening stress-resultants Σh =
[
Nh Mh

]T
in this equation can be de-

termined using the internal hardening variablesM and the hardening tensorH as

shown in [Smr&al18]:

Σh = − ∂Ψ

∂M = −1

2

∂(MTHM)

∂M = −HM. (3.8)

The associative flow rule introduced in [Smr&al18] is expressed for the rate of the

plastic strain-prescriptors Ep and for the rate of the internal hardening variablesM:

Ėp = λ̇
∂Φ

∂Σ
, Ṁ = λ̇

∂Φ

∂Σh
, (3.9)
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with the plastic multiplier λ̇ from [SKS20]

λ̇ =
∂Φ
∂ΣCĖ

∂Φ
∂ΣC ∂Φ

∂Σ + ∂Φ
∂ΣhH

∂Φ
∂Σh

, (3.10)

and the Karush-Kuhn-Tucker conditions:

λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0. (3.11)

3.2.1. FE FORMULATION
For the FE discretization, this study follows the approach presented earlier in Sec-

tion 2.2 for the determination of the stiffness matrices and the resulting nodal forces.

For plasticity an explicit convex cutting-plane algorithm following [SH98] is im-

plemented in the [JIVE]-framework. This leads to the loss of global quadratic con-

vergence in an implicit, static solution scheme. However, it provides a fast and

accurate solution in the context of an explicit scheme. In the following the explicit

procedure is laid out following [SH98] using the notation used in this dissertation

with an overview given in Algorithm 1.

Step 1 We initialize the local iteration variable l = 0, the linearized plastic flow

∆λ(0) = 0, the plastic strain-prescriptor Ep(0)

n+1 = Ep
n, and the hardening variables

M(0)
n+1 = Mn, where the index n represents the converged solution for the last

load step and n+ 1 the load step of the current global Newton-Raphson iteration.

Step 2 The stress-resultants and hardening contributions are computed according

to the constitutive relationships and subsequently the yield function at the current

iteration Φ
(l)
n+1 is evaluated using Equation (3.7). If the yield function is smaller than

a predefined tolerance Φ
(l)
n+1 < Φtol, the iterative procedure has converged, and we

can move forward with the global iterations, if not, we proceed with the next step.

Step 3 The derivatives of the yield function at the current point are evaluated

∂ΣΦ
(l) =

∂Φ

∂Σ
(Σ(l),Σh(l)

),

∂ΣhΦ(l) =
∂Φ

∂Σh
(Σ(l),Σh(l)

).

Next, the increment ∆2λ to the linearized plastic flow ∆λ(l) is computed.

Step 4 Finally, we update the plastic flow, plastic strain-prescriptor, and internal

hardening variables using the flow rules from Equation (3.9). After incrementing

the local iteration variable l = l + 1, one returns to Step 2.
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The yield surface is in [HKS21] derived for J2-plasticity and isotropic hardening

with
Ny

1 = Ny
2 = 700N,

Ny
3 = 1470N,

My
1 = My

2 = 0.62Nm,

My
3 = 0.56Nm,

(3.12)

and the exponents for the yield function Equation (3.7) as

αN
1 = αN

2 = 2.04,

αN
3 = 1.76,

αM
1 = αM

2 = 2.09,

αM
3 = 1.73.

(3.13)

For details regarding the used model, the reader is referred to the original contribu-

tion [HKS21]. The authors also report an implicit scaling of the yield surface is with

the area for the stress-resultant force Ny components, by showing an excellent

fit of the reported values with ϑ2, where ϑ represents a geometric scaling factor.

The stress-resultant moments My are likewise implicitly scaled by the volume, as is

demonstrated by the fit to ϑ3. For hardening plasticity, the hardening tensorH was

Algorithm 1 Explicit return mapping iterations.

Step 1: Initialize

Ep(0)

n+1 = Ep
n

M(0)
n+1 = Mn

∆λ(0) = 0
l = 0

Step 2: Compute stress-resultants and yield function

Σ = C

(
En+1 − Ep(l)

n+1

)
Σh = −HM(l)

n+1

Φ
(l)
n+1 = Φ(Σ,Σh) using Eq. (3.7)

If Φ
(l)
n+1 < Φtol

Finish procedure

Step 3: Compute plastic flow update

∆2λ =
Φ
(l)
n+1

∂ΣΦ(l)C∂ΣΦ(l)+∂
ΣhΦ(l)H∂

ΣhΦ(l)

Step 4: Update plastic variables

∆λ(l+1) = ∆λ(l) + ∆2λ

Ep(l+1)

n+1 = Ep(l)

n+1 + ∆2λ ∂ΣΦ(l)

M(l+1)
n+1 = M(l)

n+1 + ∆2λ ∂
ΣhΦ(l)

Increase local iteration variable l = l + 1
and go to Step 2
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derived in [HKS22], again for the identical plasticity model on the microscale:

H =

[
Hεε Hεκ

Hκε Hκκ

]
, (3.14)

with submatrices:

Hεε =

19014 17547 33121
19014 33121

sym 56864

N,
Hεκ =

16.069 16.743 15.552
16.743 16.069 15.556
24.578 24.578 26.757

Nm = HT
κε,

Hκκ =

0.015015 0.015009 0.012715
0.016015 0.012715

sym 0.010434

Nm2.

In [HKS22], the authors demonstrate the applicability of this approach with sev-

eral examples of complex three-dimensional loading scenarios for beams. These

examples also illustrate the limitations of this approach, which is that the entire

cross-section plasticizes at once, as opposed to a gradual plastification when the

cross-section is resolved at the microscale. This is particularly evident at the onset

of plasticity in bending or torsion, where the fully resolved model shows a gradual

transition from the elastic to the plastic regime. The stress-resultant approach used

here shows a sharp kink in the corresponding global load-displacement curves for

the onset of plasticity over the entire cross-section. For further details and illus-

tration of this process, the reader is referred to Herrnböck, Kumar and Steinmann

[HKS22].

NUMERICAL BENCHMARK

1m F M

Figure 3.1.: Example 5.1 taken from [SKS20].

To ensure the correct implementation and applicability of the in Algorithm 1 de-

scribed algorithm to beam plasticity, Example 5.1 from [SKS20] is modelled and com-

pared to the results in literature. A straight rod, depicted in Figure 3.1, of length

l = 1m and diameter d = 0.1m is taken to have the Young’s modulus E = 1MPa,

the shear correction coefficient k = 0.792 453, and the Poisson’s ratio ν = 0.4. The

beam is discretized using 5 linear elements. In the yield function

Φ =

∣∣∣∣n3

np
3

∣∣∣∣+ ∣∣∣∣m3

mp
3

∣∣∣∣− ζy0,
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the yield limit for axial tension is set to be np
3 = 1N and for axial torsion mp

3 =
0.12Nm at an initial yield limit ζy0 = 10. The beam is fixed at the left end and

subjected to a constant twist of 0.18 rad ≈ 10.3° at the right end. It is subsequently

stretched and compressed, with the corresponding load-displacement curve depic-

ted in Figure 3.2. The good fit between the implementation for this work and the

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

Axial Strain (10−3)

A
x
ia
l
L
o
a
d
(1
/
ζ 0

y
)

Figure 3.2.: Load-displacement curve for the benchmark problem. The solid line

depicts this work, the dotted line [SKS20].

reported results from literature demonstrates the applicability of the explicit return

mapping scheme for problems of beam plasticity. It is noteworthy here, that the ap-

parent hardening after yielding is not due to hardening in the model, but rather due

to the geometric interaction between torsion and tension in the beam. For further

details the reader is referred to [SKS20].

3.3. EFFECTS OF MESH SIZE
To ensure that the results of the investigation into the geometric scaling are inde-

pendent of the discretization a mesh sensitivity study was carried out first. For this

u,F

Figure 3.3.: Schematic of a cantilever beam under load.

purpose, a straight cantilever beam, as represented in Figure 3.3, is chosen as a

reference case. The free end of this cantilever beam is subjected to a displacement

u and the reaction force F is recorded. The beam is l = 0.1m long and has a solid

circular cross-section with a radius of r = 1mm, resulting in a slenderness-ratio

S = l/r = 100. The material has a Young’s modulus of 210GPa and a Poisson’s
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ratio of 0.3. All runs are investigated for elastic material behaviour as well as ideal

plastic and kinematic hardening plastic behaviour. In order to gain insight into the

effects of softening as well, runs are also conducted with the hardening tensor H
given in Equation (3.14) multiplied by −1. In this initial investigation a simplified

yield surface with only yielding in the out of plane bending direction is used. This

reduces Equation (3.7) to:

Φ =

∣∣∣∣ M1

My
1 −Mh

1

∣∣∣∣αM
1

− 1 ≤ 0. (3.15)
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Figure 3.4.: Load displacement curves cantilever beam.
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Initially, simulations are done with nelem = 2, 8 and 16 linear elements, respectively.

The load displacement curves are depicted in Figure 3.4. One can see a clear differ-

ence between the upper (nelem = 2) and middle (nelem = 8) discretization depicted

for all investigated material models. This difference disappears when comparing

the middle and the lower graph, corresponding to nelem = 16 elements. Following

the onset of plasticity, the expected behaviour can be observed in Figure 3.4. In

the case of ideal plasticity, a constant force is maintained after yielding. In con-

trast, models of hardening and softening plasticity exhibit a positive and negative

slope, respectively, in the load displacement curve. In Figure 3.5a the distribution

nelem

2

8

16

(a)

nelem

2

8

16

(b)

0 10 20 30 40 50 60 70 80 90 100

‖Kp
1‖ /max (‖Kp

1‖) (%)

Figure 3.5.: Localization of plasticity for (a) ideal plasticity and (b) kinematic harden-

ing plasticity (nelem = 2, 8 and 16 from top to bottom; colours depict the

relative distribution of plastic curvature).

of the plastic curvature Kp
1 is shown for a displacement of 50mm using an ideally

plastic material model. Again, in the figure, the three mesh refinements shown in

the load-displacement curves are visualized, with nelem = 2, 8 and 16 from top to

bottom. It is clearly visible that plasticity is localized in one element at the clamped

end of the beam. This stems from the fact, that the moment carried by the beam,

due to the point load at the end, has its highest value at the left boundary. As soon

as one element yields, this highest value is limited, thus limiting in turn the load

the beam can bear. In the hardening case, the transmitted cross-sectional moment

may increase due to hardening, leading to more subsequent elements starting to

yield. This is visualized in Figure 3.5b, where again the colour corresponds to the

plastic curvature Kp
1 at a tip displacement of 50mm. Again, the three refinements

n = 2, 8 and 16 are shown from top to bottom. The softening case is not depic-

ted due to the inability to achieve a converged solution at u = 50mm. To assess

mesh sensitivity of the different material models, in Figure 3.6 the forces for a de-

formation shortly after the onset of yielding at u = 20mm in the upper graph and

after a larger deformation at u = 50mm in the lower graph are shown as function
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of the discretization of the beam. The comparison between the two graphs shows

that the forces using ideal plasticity do not significantly change between the two

displacement levels, which can be motivated by the fact, that as soon as a single

element starts yielding, this element limits the effective load bearing capacity of the

entire beam. In elasticity, however, the load bearing capacity is not limited and thus

increases with increased displacement level. When introducing kinematic harden-

ing into the formulation, one can clearly see, that the load limiting effect of yielding

still persists, however less strong as in the ideal plastic case. Softening behaviour,

achieved bymultiplying the hardening tensorH by−1, results in a clear mesh sens-

itivity as can be seen in the softening graphs in Figure 3.6 at the two displacement

levels. This mesh sensitivity problem is well-known and relates to the mathemat-

ical ill-posedness of the problem. Opposite to this, for the three cases of elasticity,

ideal plasticity and kinematic hardening plasticity, one can observe mesh insensit-

ivity for a large enough number of elements. For the investigated cantilever beam,

eight elements are determined as sufficient to represent the global behaviour of the
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Figure 3.6.: Mesh convergence cantilever beam.
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system in these models. One should note, that this does not necessarily relate to

the local phenomena, as seen in Figure 3.5a, where a difference between the local

distribution of plasticity for nelem = 8 and nelem = 16 can be observed around the

left boundary. However, this has no effect on the global force response.

3.4. EFFECTS OF GEOMETRICAL SCALING
A key aspect of the design of lattice materials is the alteration of the length and ori-

entation of the constituent beams, as well as the dimensions of the cross-section.

As shown by Herrnböck, Kumar and Steinmann [HKS21] for circular and square

cross-sections, the yield surface is dependent on the scale of the geometric cross-

section. Herrnböck, Kumar and Steinmann [HKS22] demonstrated the scaling of

the hardening tensor with the microscale hardening parameter and its influence on

the yield behaviour of the beam for a circular cross-section. However, no attention

has been given to the geometric scaling of this hardening tensor. In order to in-

vestigate this, the same cantilever beam as in Section 3.3 is investigated first. The

material models for the beam are elasticity, ideal plasticity and kinematic hardening

plasticity. Both geometric parameters, length and radius of the beam, are scaled

uniformly with a scaling parameter ϑ ∈ [0.01, 100], resulting in the same slenderness

ratio across the scales. The same simplified yield surface from the previous sec-

tion as reported in Equation (3.15) is employed and the initial yield stress-resultant

bending moment My
1 is scaled with volume ϑ3 since the elastic bending moment

in a beam will scale likewise, as can be seen in the implicit scaling of the elastic

stiffness tensor shown in Equation (3.2).

3.4.1. UNSCALED HARDENING TENSOR

10−2 10−1 100 101 102
0

10

20

30

ϑ

F
/
ϑ
2
(N

)

elasticity ideal plasticity kinematic hardening

Figure 3.7.: Scaling study with an unscaled hardening tensor at u = 50mm for the

unscaled case.
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Table 3.1.: Comparative iteration 0 and 1 through Algorithm 1 for the different ma-

terial models.
Ideal Plasticity Hardening Plasticity

unscaled H scaled H

Step 1 ∆λ(0) = 0 0 0

Kp
1
(0) = 0 0 0

MK
1

(0)
= − 0 0

Iteration 0

Step 2 M1 = 0.6262ϑ3 0.6262ϑ3 0.6262ϑ3

Mh
1 = − 0ϑ0 0ϑ3

Φ(0) = 0.02101 0.02101 0.02101

Step 3 ∂M1
Φ = 3.408ϑ−3 3.408ϑ−3 3.408ϑ−3

∂
Mh

1
Φ = − 3.442ϑ−3 3.442ϑ−3

∆2λ = 0.01097ϑ2 0.02101

1.915ϑ−2+0.1779ϑ−6 0.01004ϑ2

Step 4 ∆λ(1) = 0.01097ϑ2 E 0.01004ϑ2

Kp
1
(1) = 0.03739ϑ−1 0.03421ϑ−1

MK
1

(1)
= − 0.03455ϑ−1

Iteration 1

Step 2 M1 = 0.62ϑ3 0.6206ϑ3

Mh
1 = − −0.0005188ϑ3

Φ(1) = 0.0001127 0.0001301

In Figure 3.7 the scaling behaviour of the reaction force F/ϑ2 is shown for the

three investigated material models (elastic, ideal plastic and kinematic hardening)

and the scaling parameter ϑ. The force is scaled back with ϑ−2, since the force,

similar to the moment, scales implicitly based on the elastic stiffness tensor from

Equation (3.2). For the elastic case as well for the ideal plastic case, no scale effect

is observed. In the case of the kinematic hardening material model, however, a

clear effect of the geometric scale is observed. For larger scaling factors ϑ > 1
the behaviour approaches the ideal plastic case, indicating a vanishing hardening

effect, whereas for smaller scaling factors ϑ < 1 the elastic case is approached,

indicating an increase of the hardening effect relative to plasticity present in the

model. In the following, we will investigate the cause for this spurious scale effect

and propose a mitigation strategy.

3.4.2. INVESTIGATION INTO SCALING EFFECTS
As previously demonstrated, the scale effect can be attributed to the kinematic

hardening contribution. Therefore, the development of the hardening variables,

denoted by M, as well as the hardening contributions, denoted by Σh, is investig-

ated. In order to investigate this, a single iteration of the return mapping scheme

from Algorithm 1 in Section 3.2.1 is performed, initially for ideal plasticity and sub-

sequently for hardening plasticity. Both the implicit scaling of the elastic properties

and the yield surface are present throughout, with the scale variable, ϑ, explicitly
given. To illustrate the scaling behaviour at different stages of return mapping, we
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compute a single integration point with a bending moment of M1 = 0.6262Nmϑ3,

just 1% above the yield limit of My
1 = 0.62Nmϑ3, stemming from a curvature of

K1 = M1/EI1 = 3.79m−1ϑ−1. For ideal plasticity the calculation is depicted in the

first column of Table 3.1.

These results illustrate two characteristics of the underlying plasticity scheme.

Firstly, plastic flow λ̇ scales with area ∼ ϑ2, which seems natural because in the

present framework the stress-resultant space is referred back to the rigid cross-

section of the beam. Secondly, the presented return mapping scheme converges

for the assumed simple yield surface in one iteration.

Next, we investigate the same problem with kinematic hardening. Here again,

the elastic properties and the yield surface are scaled implicitly, without considering

any scaling for the hardening tensorH. The scale variable ϑ is again explicitly given.

This is depicted in the second column of Table 3.1. Already at the end of Step 3 it

can be seen, that the update of plastic flow cannot be computed consistently with

the implicit, geometric scaling in the stiffness tensor and no scaling in the hardening

tensor. Comparing the results of the ideal plasticity term ∂ΣΦC∂ΣΦ = 1.915ϑ−2

with the hardening plastic term ∂ΣhΦH∂ΣhΦ = 0.1779ϑ−6 in the denominator of

the computation of the plastic flow update (compare Step 3 of Algorithm 1), we

can now explain the behaviour observed in Figure 3.7. For small ϑ, hardening
behaviour dominates, leading to an almost elastic model, and for large ϑ, plastic
behaviour dominates, leading to an almost ideal plastic model.

3.4.3. PROPOSED MITIGATION STRATEGY
To mitigate these spurious scale effects and ensure stable scaling in the computa-

tion of the plastic flow update, these two terms in the denominator will be further

investigated. The ideal plastic term ∂ΣΦC∂ΣΦ scales with the area inverse ∼ ϑ−2

due to the construction of the yield function and the implicit scaling of the stiffness

matrix C. The hardening plastic term ∂ΣhΦH∂ΣhΦ on the other hand, needs to be

adapted to obtain scaling with the area inverse and compute the same plastic flow

for different geometric scales. As the partial derivative of the yield function is de-

termined by the definition of the yield function, the only adaptable parameter is the

hardening tensorH. In the given case, it needs to be scaled similar to the material

stiffness (for the bending moment ∼ ϑ4) in order to achieve consistent geometrical

scaling. With this, we can compute the return mapping again, as depicted in the last

column of Table 3.1. Here, it becomes clear that the proposed approach to scale

the hardening tensor leads to an elimination of the scaling inconsistencies and also

to an algorithm that converges to the desired accuracy of Φtol = 10−3 within one

iteration. This demonstrates, that the proposed strategy ensures the continuation

of the return mapping scheme, without inconsistent scaling factors.

We will now examine the results of the proposed strategy for the response of

the cantilever beam from Figure 3.7. Figure 3.8 depicts the same loading cases,

but with the hardening tensor scaled as explained earlier. The elastic and ideal

plastic behaviour is the same as reported in Figure 3.7. The kinematic hardening

plastic behaviour shows the initially expected behaviour, namely not exhibiting any
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Figure 3.8.: Scaling study with a scaled hardening tensor (for the bending moment

∼ ϑ4) at u = 50mm for the unscaled case.

scale effect. This demonstrates the applicability of the proposed strategy to mitigate

scaling effects in hardening plasticity. This strategy will be explained in the next

section for the generic yield function Equation (3.7) together with an alternative

strategy to scale the yield surface.

3.5. STRATEGIES FOR THE CONSISTENT GEOMETRIC
SCALING OF HARDENING

When considering the yield function Equation (3.7), we can derive the necessary

scaling following the same approach. Initially, we assume again only the initial yield

surface to be scaled. Investigation of the scaling of ∂Φ
∂Σh leads to the following:

∂Φ

∂Σh
=



(. . . ) N1

(Ny
1 −Nh

1 )2

(. . . ) N2

(Ny
2 −Nh

2 )2

(. . . ) N3

(Ny
3 −Nh

3 )2

(. . . ) M1

(My
1 −Mh

1 )2

(. . . ) M2

(My
2 −Mh

2 )2

(. . . ) M3

(My
3 −Mh

3 )2


∼


ϑ−2

ϑ−2

ϑ−2

ϑ−3

ϑ−3

ϑ−3

 . (3.16)

Taking this into account, we can derive, that the hardening tensorH needs to scale

as

H? =

[
Hεεϑ

2 Hεκϑ
3

Hκεϑ
3 Hκκϑ

4

]
, (3.17)

to ensure consistency of the plastic strain-prescriptors and internal hardening vari-

ables for different geometric scales. This scaling behaviour is consistent with the

implicit scaling of the elastic stiffness tensor C from Equation (3.2). If, on the other

hand, the scaling of the yield surface from [HKS21] is interpreted not only for the ini-
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tial yield surface but for the entire yield surface, the yield function from Equation (3.7)

becomes

Φ =

∣∣∣∣ N1

(Ny
1 −Nh

1 )ϑ
2

∣∣∣∣αN
1

+

∣∣∣∣ N2

(Ny
2 −Nh

2 )ϑ
2

∣∣∣∣αN
2

+

∣∣∣∣ N3

(Ny
3 −Nh

3 )ϑ
2

∣∣∣∣αN
3

+

∣∣∣∣ M1

(My
1 −Mh

1 )ϑ
3

∣∣∣∣αM
1

+

∣∣∣∣ M2

(My
2 −Mh

2 )ϑ
3

∣∣∣∣αM
2

+

∣∣∣∣ M3

(My
3 −Mh

3 )ϑ
3

∣∣∣∣αM
3

− 1 ≤ 0,

(3.18)

where the initial yield stress-resultant forces and moments are not implicitly scaled

and are taken as reported in Equation (3.12). The derivative of the yield function

with respect to the hardening stress-resultants is then

∂Φ

∂Σh
=



(. . . ) N1

(Ny
1 −Nh

1 )2ϑ2

(. . . ) N2

(Ny
2 −Nh

2 )2ϑ2

(. . . ) N3

(Ny
3 −Nh

3 )2ϑ2

(. . . ) M1

(My
1 −Mh

1 )2ϑ3

(. . . ) M2

(My
2 −Mh

2 )2ϑ3

(. . . ) M3

(My
3 −Mh

3 )2ϑ3


∼


ϑ0

ϑ0

ϑ0

ϑ0

ϑ0

ϑ0

 , (3.19)

where we again need to keep in mind, that the current stress-resultants are scaled

implicitly via the scaling of the material stiffness tensorC. In order to ensure, that the

hardening term ∂Φ
∂ΣhH

∂Φ
∂Σh scales with the area inverse ϑ−2, the hardening tensor

H needs to be scaled according to:

H? = Hϑ−2. (3.20)

This strategy leads to identical results as scaling only the initial yield surface com-

bined with the scaled hardening tensor in Equation (3.17).

When using isotropic hardening of the form Φ = · · ·+Φy(1+h0), one can derive,
that the hardening factor associated with the isotropic hardening variable needs to

scale with the area inverse ϑ−2, in the same manner.

3.5.1. COMPARISON OF DIFFERENT HARDENING BEHAVIOUR IN
THREE DIMENSIONS

For an investigation in a fully three-dimensional setting, we use the same beam as

previously, but it is now curved in a way, that the point of loading is angled 45°, res-

ulting in a radius of ≈ 0.127m. As illustrated in Figure 3.9, the beam is loaded out

of plane. Again, for all cases, 8 linear elements are used to describe the geometry.

Load displacement curves for the material models, considered in Section 3.3, are

shown in Figure 3.10. To illustrate the scaling effect, different yielding behaviour

(kinematic hardening and softening with scaling of the initial and scaling of the en-

tire yield surface as well as isotropic hardening) is investigated. For the kinematic
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Figure 3.9.: Schematic of a bent cantilever beam under load.
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Figure 3.10.: Load displacement curves for the bent cantilever beam.

hardening cases, the values as given in Section 3.2.1 are used. For the scaling

of the initial yield surface case, the yield function as given in Equation (3.7) is em-

ployed, whereas in the case of scaling the entire yield surface, the modified surface

as given in Equation (3.18) is used. In the isotropic hardening case the same elastic

properties are used. The yield function is constructed by taking Equation (3.7) and

adding the isotropic hardening term

Φiso = Φ− ζH . (3.21)

The hardening factor used in the corresponding calculations is set to be H00 = 50.
The softening investigations are performed with the same values as the kinematic

hardening investigations with the hardening tensor in Equation (3.14) multiplied

with −1. For isotropic softening, the hardening factor is set to H00 = −50. Ini-

tially, without the adaptation of the proposed scaling factors, clear scale effects are

visible in the upper graph of Figure 3.11 as well as non-physical behaviour in the

softening cases. The effect previously observed in Section 3.4.1, whereby the kin-

ematic hardening model approaches the elastic case for ϑ and the ideal plastic case

for large ϑ, is once again identified here for the model with the initial yield surface

scaled. In contrast, the model with the entire yield surface scaled exhibits the oppos-

ite behaviour, approaching the elastic case for large ϑ and the ideal plastic case for
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small ϑ. The non-physical effect, that softening computations show an even stiffer

response at certain scaling factors compared to the purely elastic material is based

in the fact, that the denominator in Step 3 of Algorithm 1 can become negative if the

second term with a negativeH dominates the first term. This leads, under violation

of the Karush-Kuhn-Tucker conditions in Equation (3.11), to the non-physical effect

of negative plastic flow. Therefore, plastic strain-prescriptors develop in the opposite

direction of the total strain-prescriptor, which gives elastic strain-prescriptors being

higher than total strain-prescriptors, and higher stress-resultants than expected.

In consideration of the identified conditions, it is necessary to apply a scaling

factor to the hardening tensor (or factor in the case of isotropic hardening) in accord-

ance with the proposed mitigation strategy fitting to the yield surface. In the bottom

graph of Figure 3.11 it can be observed that the proposed strategy to modify the
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Figure 3.11.: Behaviour of different yield functions, with the hardening tensor scaled

(bottom), and with the hardening tensor unscaled (top) at u = 25mm

for the unscaled case.
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hardening tensor effectively eliminates the scale dependency of the behaviour ob-

served in all investigated cases. One has to note, that the chosen isotropic softening

parameter is clearly non-physical as can be seen by the fact, that the response is

stiffer than the purely elastic response.

3.5.2. INVESTIGATION OF DIFFERENT SLENDERNESS RATIOS
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Figure 3.12.: Behaviour of different yield functions, with the hardening tensor scaled

(bottom), and with the hardening tensor unscaled (top) at u = 25mm

for the unscaled case (S = 10).

Finally, we examine the behaviour for different slenderness ratios S = l/r, with
the length l and radius r of the beam. For this effect, we repeat the investigation

from the previous section with two additional beamswith different slenderness ratios

S = 10 and 1000 as opposed to S = 100 as discussed above. For the slenderness

ratio S = 1000, corresponding to a radius of r = 0.1mm for ϑ = 1, we do not
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observe any plasticity in the thin beams. This can be explained by the fact that all

the material is relatively close to the neutral fibre of the beam and thus experiences

less strain, leading to less plasticity effects when considering full cross-sections.

Furthermore, by scaling only the cross-section, the stress-resultant moments scale

with ϑ4, while the yield surface scales with ϑ3. The curvature as a beam level strain-

prescriptor, corresponding to the stress-resultant bending moment, scales with ϑ−1,

requiring the scaling of the beam length as well as the boundary conditions with the

geometry to maintain geometric similitude. On the other hand, the results for a

beam with slenderness ratio S = 10, corresponding to r = 10mm for ϑ = 1, in
Figure 3.12, evidently show stronger plastic effects. While for the cross-section in

Figure 3.11 the relative reduction of the force required to enforce the deformation

associated with ideal plasticity compared to elasticity is about a factor of 0.5, for the
examined thicker beams this ratio is closer to 0.1. The stronger plastic effect can

again be explained by the fact that the material is relatively further away from the

neutral fibre and thus experiences more strain. This example again emphasizes the

applicability of the proposed scaling strategy, as in the lower graph of Figure 3.12

all size effects observed in the upper graph have been eliminated.

3.6. CONCLUSION
The incorporation of geometric scaling into the kinematic hardening of beams, has

been demonstrated to successfully mitigate undesirable scale effects. We present

a strategy for determining appropriate scaling of hardening parameters based on

the yield function and its derivatives, and illustrate its applicability in a variety of

scenarios with different yield functions as well as hardening or softening behaviour.

Herrnböck, Kumar and Steinmann [HKS21] have shown the issue of geometric scal-

ing of the yield surface in ideal plasticity. This scaling can be interpreted in the kin-

ematic hardening model derived by Herrnböck, Kumar and Steinmann [HKS22] in

two ways: Either as implicit scaling of the initial yield surface by adapting the yield

limits in the six directions depending on the size of the cross-section, or as expli-

cit scaling of the entire yield surface. The proposed strategy is independent of the

interpretation of the scaling of the yield surface, as it derives the scaling factors

analytically from a given yield surface formulation. It is demonstrated that the un-

desirable scale effects can be mitigated and that the definition of a hardening tensor

dependent on a specific geometric scale can be avoided. This approach will be par-

ticularly beneficial for the targeted architecture of nonlinear mechanical metamate-

rials undergoing large inelastic deformations. At large deformations, the influence

of geometric properties on the nonlinear response of the structure is unknown and

requires the fitting of model parameters for a large set of geometric scales. An easily

adaptable plasticity formulation that incorporates the effects of geometric scale also

in the hardening will circumvent the need for model calibration at a wide range of

sizes. This framework enables the rapid design of architected nonlinear materials

with lattice structures and their accurate representation at arbitrary scales.
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Lightweight materials used for impact mitigation must be able to resist impact and absorb the max-

imum amount of energy from the impactor. Auxetic materials have the potential to achieve high resist-

ance by drawing material into the impact zone and providing higher indentation and shear resistance.

However, these materials must be artificially designed, and the large deformation dynamic effects

of the created structures must be taken into consideration when deciding on a protection concept.

Despite their promise, little attention has been given to understanding the working mechanisms of

high-rate and finite deformation effects of architected auxetic lattice structures. This study compares

the static and dynamic elastic properties of different auxetic structures with a honeycomb structure, a

typical non-auxetic lattice, at equivalent mass and stiffness levels. In this study, we limit the investig-

ation to elastic material behaviour and do not consider contact between the beams of the lattices. It is

demonstrated that the equivalent static and dynamic properties of individual lattices at an undeformed

state are insufficient to explain the variations observed in impact situations. In particular, the initial

Poisson’s ratio does not determine the ability of a structure to resist impact. To gain a thorough com-

prehension of the overall behaviour of these structures during localized, high rate compression, the

evolution of the elastic tangent properties under compression and shear deformation was monitored,

leading to a more profound understanding. Observations made in one configuration of stiffness and

mass are replicated and analysed in related configurations.

this chapter is integrally extracted from T. Gärtner, S. J. van den Boom, J. Weerheijm and L. J.

Sluys. ‘Geometric effects on impact mitigation in architected auxetic metamaterials’. Mech. Mater.

191, 104952 (2024)

https://doi.org/10.1016/j.mechmat.2024.104952
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4.1. INTRODUCTION
Impact events occur on various types of structures, ranging from roofs damaged

by hailstorms [SS19] to civil structures exposed to accidents, such as a car hitting

a bridge pillar [Pan&al18]. Detonation debris hitting personal protective equipment

(see e.g. [Cro19]) or satellites in orbit threatened by micrometeorites and space

debris [PA99] are examples of high impact velocity scenarios that occur in a mil-

itary or space context. In the quest for better mitigation of these impacts, auxet-

ic materials—materials with a negative Poisson’s ratio—exhibit several beneficial

properties, such as higher indentation resistance [AGS12] and shear resistance

[CL92], as well as increased fracture toughness [CL96] and energy absorption

[JH17]. These properties are promising in the quest for lightweight materials for

impact protection.

The differences in deformation behaviour between non-auxetic and auxetic ma-

terials are visualized in Figure 4.1. On the left, the lateral expansion is sketched

during compression, as expected for materials with a positive Poisson’s ratio. The

right side of the figure shows the lateral contraction after compression, as indicated

by a negative Poisson’s ratio. This lateral contraction leads to a densification of the

material at the point of impact. In addition to the properties mentioned above, this

promises additional impact resistance.

Auxetic materials are rarely found in nature (e.g. cow teat skin [LVH91] or crys-

talline silica [KC92]), but they can be artificially constructed through careful design,

as shown in various reviews [Boh&al23; Ren&al18; Wan&al20; ZLY20]. As the reviews

show, the approach to designing auxetic metamaterials is well understood, but lim-

ited to static problems, and there are myriad types of auxetic architectures (see

also [ÁD12]). Since the understanding of internal deformation patterns in dynamic

environments and the resulting implications for the use of auxetic metamaterials

in protective layers is limited and mostly based on macro-scale investigations with

little insight into the workings at meso-scale, there is a need for a better understand-

ing of the dynamic properties of these structures. Tatlıer [Tat22] compares different

auxetic structures with comparable weight in crushing events without discussing

the equivalent properties of the unit cells or their internal deformation mechanism.

Even when the deformation mechanisms are described, the authors focus on one

type of lattice only (e.g. Zhao et al. [Zha&al18] describe the dynamic performance

of arrowhead structures, Mercer et al. [Mer&al22] investigate different re-entrant lat-

tices).

As can be seen from the reviews on the subject, there are many possibilities for

designing auxetic metamaterials. The linear, static properties of all these structures

in the undeformed state are well understood [Ren&al18; Wan&al20]. In [Red&al18], the

interaction between anisotropy and finite strains up to 10% on the resulting static

properties is studied together with the phase velocities of acoustic waves propagat-

ing through the lattice for Euler-Bernoulli beam structures with negligible bending

stiffness. In impact scenarios, however, larger deformations (up to full densification)

are expected with nonlinear waves propagating through the lattice structure. The
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ν > 0 ν < 0

Figure 4.1.: Positive Poisson’s ratio materials (ν > 0) and negative Poisson’s ratio

or auxetic materials (ν < 0) under compression (adapted from [Lim15]).

dynamic properties of different auxetics—and the influence on impact mitigation—

are mainly reported phenomenologically for singular auxetic architectures without

any comparison of different architectures under similar circumstances (see among

others [Alo&al20; Che&al21; Gál&al21]).

This study contributes a first step in addressing the lack of understanding of the

deformation behaviour of (auxetic) architected materials under high-rate localized

compression by comparing the geometrically nonlinear static and dynamic prop-

erties of different architectures in a purely elastic environment. Our focus is on

two-dimensional structures in order to identify the interdependencies between the

lattice architecture and the resulting dynamic behaviour. We compare a set of differ-

ent architectures based on the underlying mechanisms that produce auxeticity, all

designed to exhibit the same linear-elastic properties and mass density. The study

is carried out for nonlinear and dynamic problems and offers explanations for the

observed differences. The different auxetic architectures are studied using a cus-

tom FE implementation of Simo-Reissner beams as explained in Chapters 2 and 3.

In this study material non-linearities and contact between the bars are ignored.

The chapter is structured as follows: In Section 4.2 an overview of the possibilit-

ies to generate auxeticity in architected materials is given. Then, in Section 4.3, the

numerical framework and its mechanical background are discussed. In Section 4.4,

linear, static studies are performed on unit cells to find comparable configurations of

different architectures. It is shown how these linear properties change when enter-

ing the nonlinear regime. The resulting dynamic effects are reported in a localized

impact test including a study on strain rate effects. In Section 4.5, the perform-

ance implications of the different architectural approaches are discussed. Finally,

conclusions are drawn, and limitations of this study are presented.
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4.2. AUXETIC ARCHITECTURES
4.2.1. DESIGN OPTIONS
The auxetic effect is based on the lateral inward movement of parts of the structure

under uniaxial compression. This inward movement can be explained by two main

mechanisms: rotation and inward folding.1 In the following, different unit cell archi-

tectures and the corresponding design parameters will be explained. A unit cell, in

the context of this publication, is the smallest part of a lattice that can be copied and

connected to create the entire lattice.

The first class of auxetic architectures is constituted by those that derive their

negative Poisson’s ratio from rotation at the joints. These so-called chiral structures

generate a rotating effect with circularly oriented beams, thus inducing rotation un-

der compression. The chiral structure considered is the model introduced by Smith,

Grima and Evans [SGE00], under a different name, to describe the behaviour of

auxetic foams. In [BL19], the effects of geometrical parameters on the linear effect-

ive properties of the structure are described. Aschematic of the chiral architecture is

shown in Figure 4.2a and its auxetic mechanism is illustrated in Figure 4.2b. For the

design of this architecture, it should be noted that due to the linear elasticity model

on the material level, structures with geometric similitude exhibit the same equival-

ent properties. Thus, the width b and the thickness of the bars d are not chosen as

independent parameters but rather the ratio t = d/lc, with lc = 0.5b/ cosα as the

length of a central bar. Next to this ratio, the angle of the bars α is a variable meas-

ure. The colours in the mentioned and the following figures represent the same

architecture throughout the chapter in all illustrations and graphs.

b

α

(a) (b)

Figure 4.2.: Chiral architecture. (a) shows the design and geometric parameters,

(b) illustrates uniaxial compression.

1Körner and Liebold-Ribeiro [KL15] argue that these two effects can be further reduced to a single

mechanism, namely rotation. They describe a workflow to generate arbitrary auxetic structures based

on eigenmode analysis. To explain the folding mechanism, they consider out-of-plane modes and

recover the rotation mechanism by projecting the eigenmodes onto a plane. This results in beam

rotation as opposed to joint rotation.
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Taking four chiral unit cells andmirroring every other cell creates an antichiral struc-

ture, where a single unit cell consists of four rotational centres with alternating dir-

ections. The antichiral architecture is presented in Figure 4.3a with its deformation

mechanism in Figure 4.3b.

2b

α

(a) (b)

Figure 4.3.: Antichiral architecture. (a) shows the design and geometric paramet-

ers, (b) illustrates uniaxial compression.

The second class of architectures is composed of lattice structures that fold at

the joints. In order to create an auxetic effect, this class consists of non-convex

polygons, i.e. polygons with a reflex angle (θ > 180°). The auxetic effect is caused

by the non-convexity of the re-entrant structures, which causes them to fold laterally

inwards under compression. Themost prominent example of this is a re-entrant honey-

comb (see among others [Gib&al97]). The parameters of this architecture are shown

in Figure 4.4a and the working mechanism is illustrated in Figure 4.4b. Again, due

to geometric similitude the properties do not change with absolute scale, instead of

the lengths, l and b, individually their ratio r = l
b is taken as design variable and

instead the thickness of a single beam d, the thickness scaled to the base length

t = d
b is taken as variable. Finally, the angle between the base and the angled

beams α is added to the set of variables for this architecture. Since the properties

of this architecture are not invariant to the orientation, this architecture will also be

investigated rotated by 90°. The corresponding deformation mechanism is shown

in Figure 4.4c.

While the re-entrant structure has two opposing folds, another architecture with

two folds in the same direction is the arrowhead structure. This commonly investig-

ated auxetic structure was originally the result of a topology optimization for negative

Poisson’s ratio [LSB97]. The architecture is visualized in Figure 4.5a along with its

parameters and the working mechanism shown in Figure 4.5b. In this structure,

the beam thickness d is scaled with the height of the unit cell t = d
h . The three

variables, that determine the properties of this structure are the two angles of the

longer beam β as well as the shorter beam α and the height h. As with the re-

entrant honeycomb structure, this architecture is also studied rotated by 90°. The

corresponding deformation mechanism is shown in Figure 4.5c.
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b

l
α

θ

(a)

(b) (c)

Figure 4.4.: Re-entrant honeycomb architecture. (a) shows the design and geomet-

ric parameters, uniaxial compression is illustrated in (b) for 0° orienta-

tion and in (c) for 90° orientation.

To allow for a comparison of the different architectures, a non-auxetic architecture

is also included as a reference. Since the normal honeycomb is based on the same

architecture as the re-entrant honeycomb, it is included in the study. Due to this

similarity, its properties are determined by the same geometry factors as the re-

entrant honeycombs, namely the ratio between the beam lengths r = l
b , the ratio

between the thickness and the base length t = d
b and the angle between the base

beams α. Similar to the argumentation in the re-entrant architecture, investigations

are also conducted with the structures rotated by 90°. The general configuration is

depicted in Figure 4.6a, with the deformation mechanisms are shown in Figure 4.6b

and Figure 4.6c for the 0° and 90° orientation respectively.

Table 4.1.: Range of properties for different architectures.
Architecture α t r β design constraint

re-entrant (20°, 85°) (0.01, 0.1)
(
1
3 ,

4
3

)
− r < 1

2 cosα
arrowhead (5°, 45°) (0.01, 0.1) − (50°, 80°) 3 tanα < tan β

chiral (5°, 60°) (0.01, 0.1) − −
antichiral (5°, 60°) (0.01, 0.1) − −

honeycomb (95°, 145°) (0.01, 0.1)
(
1
3 ,

4
3

)
−
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h 1
2h β

α

(a)

(b) (c)

Figure 4.5.: Arrowhead architecture. (a) shows the design and geometric paramet-

ers, uniaxial compression is illustrated in (b) for 0° orientation and in (c)

for 90° orientation.

4.2.2. DESIGN SELECTION
The parameters of all the selected architectures are tuned so that all the lattices

in the undeformed configuration have the same Young’s modulus in the vertical

direction and the same relative density. The following is a brief explanation of the

procedure for metamaterials with a density relative to the constituent material

ρ?rel =
ρ

ρmat

= 0.1

and an equivalent Young’s modulus E?
y = 300MPa, where (·)? represents target

properties. For all investigations, the base material of the structures is set as a

generic metal with Emat = 210GPa, νmat = 0.3, and ρmat = 7850 kgm−3.

Since this study assumes linear elastic material behaviour at the microscale,

structures with geometric similitude can be assumed to have identical properties.

Thus, as explained above, the thickness t of the beams related to the primary length

of the unit cell as well as the ratio between the beam lengths r are taken as free
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b

l
α

(a)

(b) (c)

Figure 4.6.: Honeycomb architecture. (a) shows the design and geometric para-

meters, uniaxial compression is illustrated in (b) for 0° orientation and

in (c) for 90° orientation.

Table 4.2.: Resulting properties and unit cells of the investigated architectures with

target properties E?
y = 300MPa, ρ?rel = 0.1

Anglesα, β are given in degrees and themoduliEx, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.035 65.62 − 0.43 0.100 297 273 −1.00 −0.92 8 8
re-entrant (90°) 0.046 81.67 − 0.50 0.100 297 2,937 −0.26 −2.60 15 15
arrowhead 0.021 11.60 74.90 − 0.100 296 468 −0.73 −1.16 924 924
arrowhead (90°) 0.030 13.81 64.34 − 0.100 295 80 −1.85 −0.50 1,583 1,583
chiral 0.078 28.11 − − 0.100 299 299 −0.38 −0.38 53 19
antichiral 0.085 26.09 − − 0.100 299 299 −0.69 −0.69 10 10
honeycomb 0.094 119.69 − 1.14 0.100 302 246 1.08 0.88 88 88
honeycomb (90°) 0.096 125.63 − 1.17 0.100 302 189 1.23 0.77 101 101

x

y
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variables. All free variables are tuned within their ranges and conditions reported in

Table 4.1 to ensure realistic structures. The ranges and conditions are explained in

more detail in Appendix A.1. Given these design ranges, the individual structures

are subsequently tuned to exhibit properties as close to the targets as possible.

The resulting properties as well as visualizations of the corresponding unit cells are

shown in Table 4.2. Details of the tuning process and results for different target

lattice properties are shown in Appendix A.1.

4.3. NUMERICAL FRAMEWORK
The aforementioned lattice structures are implemented as Simo-Reissner beams,

as laid out in Chapters 2 and 3. For the initial investigations in this chapter, the ma-

terial behaviour is limited to the linear elastic case and no contact detection is em-

ployed. The implementation for this work is carried out using the JIVE-Framework

[JIVE].

4.3.1. TANGENT PROPERTY COMPUTATION
The linear equivalent properties of a unit cell need to be computed for simple de-

formation modes. In order to do so, periodic boundary conditions (PBCs) were

implemented. Since the investigated architectures do not possess nodes in the

corners, ghost nodes have been introduced for the application of the PBCs. The

implementation of this procedure is explained in A.2.1.

In order to determine the equivalent elastic properties in a deformed state, a

simple approach using finite differences was chosen. The incremental displace-

ment gradient δH is related to incremental Piola-Kirchhoff stresses δP by tangent

stiffness tensor C4

δP = C4 : δH. (4.1)

In order to estimate the elastic properties at a fixed deformation in a first step, the

displacement gradient at this deformation H◦ is recorded. Then in a next step, this

displacement gradient is perturbed in one direction

Hij± = H◦ ± 0.5 × 10−9
[
δi1δj1 δi1δj2
δi2δj1 δi2δj2

]
i, j ∈ [1, 2] (4.2)

with the Kronecker delta δkl. The corresponding 1st Piola-Kirchhoff stress tensors

P ij±, i, j ∈ [1, 2] are then recorded. For all directions, corresponding tangent prop-

erties are first computed by addition of the recorded values

∆Hij = Hij+ −Hij−

∆P ij = P ij+ − P ij− i, j ∈ [1, 2]. (4.3)

Then the coefficients of the tangent stiffness tensor are determined by dividing the

stresses by the corresponding strains:

cijkl =
∆P kl

ij

∆Hkl
kl

. (4.4)
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Finally, using the inverse of the stiffness tensor C4, the compliance tensor S4, the

equivalent tangent Young’s modulus is calculated by rearranging the equation[
δH11 0
0 δH22

]
= S4 :

[
δP11 δP12

δP21 0

]
(4.5)

for

δH11 =
1

E11
δP11. (4.6)

The Poisson’s ratio is then found by further rearrangements leading to

δH22 = −ν12δH11. (4.7)

Similar procedures are employed to determine the tangent properties E22 and ν21.
The constrained moduli M11,M22 and shear moduli G12, G21 are determined by

rearrangements of the equation[
δH11 0
0 0

]
= S4 :

[
δP11 δP12

δP21 δP22

]
(4.8)

for

δH11 =
1

M11
δP11. (4.9)

Again, identical procedures are employed to determine G12, G21, and M22. Details

are found in A.2.2

4.4. NUMERICAL RESULTS
Using the methods described in Section 4.3 and the unit cells derived from the ar-

chitectures as described in Section 4.2, the changes in the properties of unit cells

subjected to large deformations are discussed below. First, the equivalent Young’s

modulus and Poisson’s ratio as static properties are presented, followed by an over-

view of the equivalent lateral to the impact (x-direction) pressure and shear wave

speeds as well as the longitudinal to the impact (y-direction) pressure wave speeds
as dynamic properties of the different architectures. Finally, the behaviour of the dif-

ferent architectures under high strain rate and localized compression is examined

and discussed.

(a) (b) (c)

Figure 4.7.: (a) uniaxial compression (Equation (4.10)), (b) planar compression

(Equation (4.11)) and (c) pure shear deformation (Equation (4.12)) of

the re-entrant unit cell using the PBCs as in Figure A.1.
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4.4.1. STATIC PROPERTIES OF THE ARCHITECTURES
The evolution of the initial static properties of each architecture, reported in

Table 4.2, is investigated with the procedures described in Section 4.3.1 applied

to single unit cells. Structures that maintain high stiffness over a wide range of

deformations are expected to have higher resistance in an impact scenario, as

the decelerating forces on the impactor are high over the range of deformation to

be expected during impact. To estimate this, three types of deformation are con-

sidered: (a) unconstrained uniaxial compression (in the following called uniaxial),

(b) constrained uniaxial (in the following called planar) compression, and (c) pure

shear deformation, as visualized in Figure 4.7.

0 10 20 30
0

3

6

9

Compressive strain (%)

S
tr
e
s
s
(M

P
a
)

re-entrant re-entrant (90°) arrowhead arrowhead (90°)

chiral antichiral honeycomb honeycomb (90°)

Figure 4.8.: Stress-strain curves in uniaxial (unconstrained) compression for differ-

ent architectures.

The architectures are first exposed to uniaxial compression. This is done by

applying the displacement gradients

H = k

[
• 0
0 −1

]
k ∈ [0, 0.33] , (4.10)

where • denotes no constraint. This deformation mode is illustrated in Figure 4.7a.

At each deformation step the corresponding equivalent elastic tangent properties

are recorded as well as the current stresses and strains at the four boundaries.

Since contact and interpenetration of different beams, which is not modelled by

the numerical framework, occur at later stages of deformation, in the following only

compression up to k = 33% will be discussed.

In the stress-strain curve (Figure 4.8), it is shown that all but two structures show

a reduced stiffness under uniaxial compression. The rotated re-entrant honeycomb

structure (depicted by the dashed blue line) is the only structure that keeps stiffen-

ing. This effect is due to the fact, that the foldingmechanism aligns the beams in ver-

tical direction, promoting axial loading over bending in uniaxial compression. The
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Figure 4.9.: Change of properties under uniaxial (unconstrained) compression for

different architectures, namely (a) the normalized (unconstrained)

Young’s modulus Ey and (b) the Poisson’s ratio νyx.

same explanation holds for the initial stiffening of the arrowhead structure. However,

at approximately 6.5% compression the beams start to buckle, leading to a trans-

ition from axial loading to loading in bending and thus an overall weakening at larger

deformations. These effects are depicted as well in Figure 4.9a, where the normal-

ized equivalent Young’s modulus Ey is plotted against the compressive strain. In

this figure some relevant deformation patterns of the architectures are visualized as

well. The buckling of the arrowhead structure (depicted in solid orange) can be seen

at the plotted deformation patterns at 6% and at 7% compression. Prior to buck-

ling the alignment of the beams is in vertical direction, leading to more axial loading.

After buckling, the beams are loaded in bending again. Similarly, the vertical align-

ment of the beams in the rotated re-entrant honeycomb structure is clearly visible

in the deformation sketches in Figure 4.9a at 12.5% and 25%. Additionally, in the

lower graph Figure 4.9b, the Poisson’s ratio νyx is plotted against compression.

Structures with a reduced stiffness also exhibit a decrease in involvement of lat-

eral material in larger patches, i.e. a Poisson’s ratio developing towards zero. This

results in auxetic architectures exhibiting a less pronounced negative Poisson’s ra-

tio, thus reducing the effect of lateral material involvement. Noteworthy is the fact,

that the rotated regular honeycomb structure, upon compression, resembles the
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rotated re-entrant honeycomb structure. This is visualized in the deformation pat-

tern at 30%, and supported by the approximately linear decrease of the Poisson’s

ratio, leading to a change from non-auxetic to auxetic behaviour at high (> 33%)

compression.
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Figure 4.10.: Stress-strain curves in planar (constrained) compression for different

architectures.

During impact, lateral material is confining the lateral displacement of the im-

pacted lattice, thus constrained uniaxial or planar compression resembles an impact

scenario better. For the assessment of the impact performance of metamaterials it

is therefore valuable to also consider planar compression. This planar compression

is described by the displacement gradients

H = k

[
0 0
0 −1

]
k ∈ [0, 0.33] . (4.11)

This deformation mode is illustrated in Figure 4.7b. In Figure 4.10 the correspond-

ing stress-strain curves are plotted. It should be noted, that the stresses are much

higher compared with the stresses in uniaxial compression (in Figure 4.8). In planar

compression only the rotated re-entrant honeycomb structure exhibits stiffening be-

haviour. The regular honeycomb and arrowhead architectures both display reduced

stiffness leading to snap-through, resulting in negative slopes of the stress-strain

curve following substantial planar compression. An illustration of the corresponding

deformed structures is provided in Figure 4.11 for the rotated honeycomb unit cell.

This behaviour is also observed in the re-entrant honeycomb unit cell. The normal-

ized Young’s modulus Ey plotted against the deformation as done in Figure 4.11a

shows a similar behaviour. It should be noted here, that the Young’s modulus as

proxy for the unconstrained uniaxial tangent stiffness in Figure 4.11a is not equal

to the derivative of the constrained stress-strain curve in Figure 4.10. The stiffness

for all but the (anti-)chiral and the rotated re-entrant honeycomb architecture be-

come negative, resulting in loss of resistance against unconstrained compression.
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Figure 4.11.: Change of vertical properties in planar (constrained) compression

for different architectures, namely (a) the normalized (unconstrained)

Young’s modulus Ey and (b) the Poisson’s ratio νyx.

In the lower graph, Figure 4.11b, the Poisson’s ratio νyx is plotted against the com-

pressive strain. Here, the rotated regular honeycomb’s transition from non-auxetic

to auxetic behaviour is even more pronounced than for uniaxial compression and

can be observed around 18.5% compression. The deformation patterns at 10%

and 30% planar compression show the transitions from the convex honeycomb

shape towards a non-convex shape resembling—like in the uniaxial case—a re-

entrant honeycomb structure. Also, the arrowhead structure transfers from auxetic

behaviour into non-auxetic behaviour after buckling (in planar compression at ap-

proximately 1.5%). This buckling is visualized in the deformation patterns at 0%

and 2.5% planar compression in Figure 4.11a.

In an impact scenario also significant shear deformation may be expected. The

development of different architectures under shear deformation is thus investigated

by applying the displacement gradient

H = k

[
0 −0.5

−0.5 0

]
k ∈ [0, 0.33] . (4.12)
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Figure 4.12.: Stress-strain curves in pure shear for different architectures.

This deformation mode is illustrated in Figure 4.7c. In Figure 4.12, the stress-strain

curves for both shear components are shown. In the stress-strain curves, the reg-

ular honeycomb structures show the strongest resistance towards shear at higher

deformations. The arrowhead structures show a steep decline in shear resistance,

as they initially show the highest stresses upon shear deformation, followed by

only minor increase in stresses at increasing strains. In Figure 4.13 the normal-

ized Young’s modulus and the Poisson’s ratio are plotted against shear deforma-

tion. Here, apart from the arrowhead structures, all structures show an increasing

Young’s modulus. Especially the non-auxetic honeycomb structures show an in-

crease, which is significantly larger compared to the corresponding auxetic struc-

tures. The arrowhead structures exhibit three regimes across the range of shear

deformation examined. The progressive deformation patterns throughout shear de-

formation are shown in Figure 4.14. After a steep initial decline in Young’s modulus,

an almost constant modulus is seen before the Young’s modulus finally starts to in-

crease. These regions in the stiffness properties for the arrowhead architecture are

explained by the fact that the two central beams in the unit cell initially form a down-

wards facing half-wave. Throughout deformation, the amplitude of this half-wave

is decreasing, leading to load transfer by bending and pre-stresses even leading
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Figure 4.13.: Change of vertical properties under pure shear deformation for differ-

ent architectures, namely (a) the normalized Young’s modulus Ey and

(b) the Poisson’s ratio νyx.

0% 5% 10% 15% 20% 25% 30%

Figure 4.14.: Pure shear deformation pattern of arrowhead structures.

to negative Young’s moduli, as can be seen in Figure 4.13a. After some deform-

ation one of the two central beams suddenly shows large deformation, leading to

the two central beams resembling a full sine wave with one node of the wave at the

central joint. This is occurring at 4% for the rotated and 7% for the unrotated vari-

ant. Here, further deformation does not change the overall vertical stiffness of the

unit cell, as the connecting joint is now resembling the node of the wave. At 28%
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for the rotated and 22% for the unrotated variant the second beam again shows a

sudden deformation in such a way, that the two central beams again resemble a

(now upwards facing) half-wave. The connecting joint is located on the peak of this

half-wave leading again to stiffening, as every displacement of the joint has the res-

istance of the beams working against it. Lastly, the Poisson’s ratio (as seen in the

lower graph Figure 4.13b) almost remains unchanged under shear deformation for

all but the arrowhead architectures. The arrowhead architectures again show two

jumps in their tangent properties, coinciding with the earlier mentioned configuration

changes.

4.4.2. DYNAMIC PROPERTIES OF THE ARCHITECTURES
In the assessment of the effects of different architectures in impact scenarios, not

only the (static) loading resistance, as discussed in Section 4.4.1, is of importance,

but also the behaviour of the architectures in dynamic loading is relevant. First

measures to assess this dynamic behaviour are the pressure wave speed cPx
and

shear wave speed cSx lateral to the impact direction, as well as the pressure wave

speed cPy longitudinal to the direction of impact. They are computed with the fol-

lowing formulae

cPx
=

√
Mx

ρ
, cSx

=

√
Gyx

ρ
, cPy

=

√
My

ρ
(4.13)

where Mx, Gyx, and My are determined during deformation as described in Sec-

tion 4.3.1. The density ρ is updated with the deformation as well. As these wave

speeds are calculated for homogenized cells, wave phenomena with wave lengths

smaller than the size of each unit cell are not captured in this approach. Considering

the development of the wave speeds cPx
, cSx

, cPy
in the three cases described in

Section 4.4.1—uniaxial compression, planar compression, and pure shear—offers

more insight into the behaviour of different architectures under dynamic loading

conditions. Higher lateral wave speeds lead to a higher involvement of the lateral

material, since the stress concentrations move faster to the sides, i.e. the not im-

pacted sections of the patch leading to a better distribution of energy.

In Figure 4.15 the wave speeds are plotted against uniaxial compression for all

eight architectures. In the top graph (Figure 4.15a), the lateral pressure wave speed

cPx
is shown. It can be seen, that in the undeformed state, the rotated re-entrant

unit cell has the highest lateral pressure wave speed of the investigated structures

with an obvious decline upon compressive deformation. In the middle graph Fig-

ure 4.15b, the lateral shear wave speeds of the different structures and their devel-

opment under uniaxial compression are shown. It can be seen, that the lateral shear

wave speeds, compared to the lateral pressure wave speeds, are significantly smal-

ler for all architectures but the arrowhead ones. In the lower graph Figure 4.15c, the

longitudinal pressure wave speeds cPy
are shown. They show similar behaviour to
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Figure 4.15.: Change of the lateral pressure and shear wave speed under uni-

axial compression, (a) shows the lateral pressure wave speed cPx
,

(b) shows the lateral shear wave speed cSx
, (c) shows the pressure

wave speed in impact direction cPy
.
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the Young’s moduli in impact direction Ey (compare Figure 4.9a). The differences

are due to the constrained modulus My in the formula for the wave speed instead

of the (unconstrained) Young’s modulus Ey as well as in the consideration of the

changing density ρ throughout the deformation.

The peaks in the chiral structure wave speeds in both graphs, Figure 4.15a

and Figure 4.15b, as well as in the rotated re-entrant honeycomb structure in the

cSx graph, are caused by instabilities of the pre-stressed beams undergoing small

changes in loading direction leading to ‘micro’-buckling, during the finite difference

determination of the tangent stiffness tensor C4. This leads to the structure appear-

ing with greatly exaggerated or reduced stiffness around polar points corresponding

to the peaks.

Similar behaviour of the wave speeds can be seen in Figure 4.16, where the wave

speeds are plotted against planar compressive strains. Compared with the uniaxial

case previously discussed, the rotated re-entrant structure also tends to lose some

of its lateral pressure wave speed, as can be seen in Figure 4.16a. This is, how-

ever, less pronounced and since all other structures show a substantial decrease,

it maintains the highest wave speed. The shear wave speeds in Figure 4.16b show

similarly low levels as in the uniaxial case. The pressure wave speeds in the impact

direction are depicted in Figure 4.16c. The various peaks, that can be seen, again

stem from the pre-stress in the singular beam elements at the various stages of

compression corresponding instabilities during the finite difference calculation.

In the shear deformation case, as shown in Figure 4.17a, all architectures show

a positive lateral pressure wave speed throughout the shear deformation except

for the arrowhead unit cell in the 90° case. In the middle graph, Figure 4.17b,

again, all architectures but the arrowhead ones show an ability to maintain their

pressure wave speeds. The lower graph in Figure 4.17c depicts the development

of the longitudinal pressure wave speeds over the shear deformation. The negative

range of wave speeds for the arrowhead lattices is due to the subsequent flipping

of the two central beams as explained in Section 4.4.1 and shown in Figure 4.13.

In Figure 4.17 as before, the peaks and apparent infinite wave speeds stem from

instabilities in the finite difference computation of the tangent stiffness tensor C4.

4.4.3. IMPACT PERFORMANCE OF ARCHITECTURES
The impact protection of the different architectures is assessed by assembling the

unit cells into a bigger patch. A schematic of the setup is shown in Figure 4.18

and will be subsequently explained. These patches are designed to have an ini-

tial height h0 ≈ 1 cm, width w0 ≈ 1 cm, and depth d0 = 10 cm. Due to the fact,

that the different unit cells have different sizes patches of similar size contain differ-

ent numbers of unit cells for the different architectures. Initially, these patches are

globally compressed statically and dynamically at strain rates Ḣ of 2.5ms−1, 5ms−1,

7.5ms−1 and 10ms−1. Later, additional material is added to the sides to investigate

the effects of lateral material involvement. The width of the impact loading is kept

constant with the overall material width changing, resulting in width-to-impact ratios
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Figure 4.16.: Change of the lateral pressure and shear wave speed under planar

compression, (a) shows the lateral pressure wave speed cPx
, (b)

shows the lateral shear wave speed cSx
, (c) shows the pressure wave

speed in impact direction cPy
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Figure 4.17.: Change of the lateral pressure and shear wave speed under shear,

(a) shows the lateral pressure wave speed cPx
, (b) shows the lateral

shear wave speed cSx , (c) shows the pressure wave speed in impact

direction cPy .
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Figure 4.18.: Sketch of the setup used for the simulations.
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of ri = 1, 1.5, 2, 3 and 5. The compression is induced with changing Dirichlet

boundary conditions on the top boundary over the constant impact width, whilst the

reaction forces are recorded. The bottom boundary is fully fixed, and the sides are

free.

During the computation, the displacements of the boundary subjected to move-

ment ut(t) are stored as prescribed. The total force needed to achieve this displace-
ment ft(t) and the total reaction force at the lower boundary fb(t) are recorded as

well. In post-processing, the specific energy absorption (SEA) for the undeformed

volume under the impacted boundary is computed as:2

SEA(t) =
1

ρ0

∫
τ<t

ut(τ)

h0

ft(τ)

w0d0
. (4.14)
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Figure 4.19.: SEA at non-localized (ri = 1), static (Ḣ = 0ms−1) compression.

The results of non-localized (ri = 1), static (Ḣ = 0ms−1) compression are shown

in Figure 4.19. It should be noted, that here only deformations up to 20% are dis-

cussed in order to exclude interpenetration of beams, which may happen because

contact is not considered in the numerical framework. In the graph the SEA is plot-

ted against the compressive strain. The patches consisting of arrowhead unit cells

(both rotated and not) could not be computed for the desired compression of 20%

due to a plethora of local buckling points in the singular structural members. The

compression of the regular honeycomb structures (rotated and not rotated) requires

most work especially in the later stages. Given the static nature of this experiment,

only the static properties described in Section 4.4.1 have an effect. Here, especially

2normalization for the initial volume is taking place to eliminate differences between the aspect ratios

of the architectures and subsequent differences in initial volume
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the vertical stiffness during shear deformation as seen in Figure 4.13a and the con-

strained stiffness related to the constrained stress-strain curve in Figure 4.10 are

of importance. In both of these figures the regular honeycomb structures show the

stiffest response over a wide range of deformation.
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Figure 4.20.: SEA at localized ((a) ri = 3, (b) ri = 5), static (Ḣ = 0ms−1) compres-

sion.

The next experiments are conducted with increased width of the patches (ri > 1),
but still under static loading (Ḣ = 0ms−1) and reported in Figure 4.20. The SEA

is again plotted against the (local) compression, in Figure 4.20a for ri = 3 and

in Figure 4.20b for ri = 5. Given the static context of this analysis, no funda-

mental changes are observed apart from the overall rise in work needed to com-

press the supported structure (compare the ranges of the y-axes of Figure 4.19 and

Figure 4.20). It should be noted, that the patches of the arrowhead architectures

could not be computed to the desired compression level again due to reasons as

mentioned before.

Next, the dynamic behaviour is investigated using moderately localized impact

conditions (ri = 3) and a set of strain rates (Ḣ = 5ms−1 and 10ms−1). The SEA of

the different structures is shown in Figure 4.21. The corresponding static compres-

sion is shown in Figure 4.20a, whereas the upper graph (Figure 4.21a) shows the

SEA at a compression speed of Ḣ = 5ms−1, which is doubled to Ḣ = 10ms−1 in

the lower graph Figure 4.21b. At moderate impact speeds (Ḣ = 5ms−1 in the up-

per graph), the difference between the structures in static compression are small,
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but the fact that the two regular honeycomb structure show a higher absorption

compared to the auxetic structures, does not change. Only at the highest compres-

sion speeds (10ms−1), the re-entrant honeycomb, in its 90° configuration, is able

to match with the regular honeycomb structures. As shown in Figure 4.16a and

Figure 4.17a the re-entrant honeycomb shows the highest lateral pressure wave

speeds, which in turn relates to a good involvement of the surrounding material.

The regular honeycomb architectures show the highest values in the SEA through-

out deformation, which is due to their ability to maintain a high stiffness in loading

direction (as seen in Figure 4.11a and Figure 4.13a).

A second set of investigations discussed in the following is conducted with

stronger localized impact conditions (ri = 5) at the same set of speeds (Ḣ = 5ms−1

and Ḣ = 5ms−1). In both graphs in Figure 4.22, when compared to the corres-

ponding graphs in Figure 4.21, it can be observed that the effect of more lateral

material is negligible for all architectures except from the rotated re-entrant hon-

eycomb depicted in dashed blue. This effect, when comparing Figure 4.21b and

Figure 4.22b even results in a better energy absorption capability of the re-entrant

honeycomb structure compared to the regular honeycomb structure at high strain

rates. This is due to the capability to involve the lateral material under strong de-

formation, which becomes more relevant with more lateral material (higher ri) and
at higher strain rates, as in Figure 4.22a the rotated re-entrant honeycomb is not
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Figure 4.21.: SEA at localized (ri = 3), dynamic ((a) Ḣ = 5ms−1, (b) Ḣ = 10ms−1)

compression.
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able to surpass the rotated regular honeycomb architecture. Figure 4.23 further

illustrates this effect. The top Figure 4.23a depicts the left half of the regular hon-

eycomb lattice and the right half of the re-entrant honeycomb lattice, both in their

90° orientation, in the undeformed state. The line thicknesses correspond to the

beam thicknesses in the simulations, it should however be noted, that the re-entrant

structure has been enlarged by about 9% in order to reach the same height and

better visual comparability with the regular honeycomb. In the lower graphs, the

deformed halves of the lattices are shown at ∼ 10% (Figure 4.23b) and ∼ 20%

(Figure 4.23c) compression, with their respective undeformed configuration in the

background. Here, the involvement of the surrounding material by lateral pressure

wave speeds can be clearly seen. At 10% compression, the re-entrant honeycomb

lattice shows already deformation in the upper right corner of the lattice, whereas

the regular honeycomb lattice shows deformation only up to roughly one third of the

width. Up until this point, as can be seen in Figure 4.22b, the regular honeycomb

absorbs more energy, which can be motivated by the higher stiffness observed in

Section 4.4.1. Only at later stages the higher material involvement as discussed

in Section 4.4.2 contributes to the energy absorption. This can be more clearly

seen in Figure 4.23c. Here the further involvement of the surrounding material for

the regular honeycomb lattice is low when compared to the involvement of lateral

material by the re-entrant honeycomb lattice on the right side, where the right edge
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Figure 4.22.: SEA at localized (ri = 5), dynamic ((a) Ḣ = 5ms−1, (b) Ḣ = 10ms−1)

compression.
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shows deformation all the way down to the back face. These deformations clearly

show the activation of the lateral material, leading to the dispersion of the impact

energy into kinetic and elastic potential energy of the material far away from the

impact zone. However, for the example of the rotated regular honeycomb structure,

it can be seen that this effect does not simply originate from a negative Poisson’s

ratio, but rather from the ability to maintain its stiffness at different deformations

modes as discussed in Section 4.4.1 whilst at the same time providing the ability to

involve the lateral material as discussed in Section 4.4.2.

(a) 0% compression

(b) 10% compression

(c) 20% compression

Figure 4.23.: Comparison of the regular and re-entrant honeycomb under localized

(ri = 5), dynamic (Ḣ = 10ms−1) compression.

In Figure 4.24 the effect of the lateral material as expressed by the impact ratio ri
is shown as the SEA is plotted against the impact ratio for different levels of com-

pression. In this graph, it is shown that while most structures tend to obtain less

additional benefit from additional lateral material, the rotated re-entrant honeycomb

exhibits even at ri = 5 a positive slope of the SEA-curve, resulting in an added

benefit of a further extension of the lattice to the sides, in other words for higher ri
values. This suggests, that when analysing the elastic energy absorption capabil-

ities of different architected materials, the Poisson’s ratio in itself is not sufficient in

order to determine the performance of a particular architecture in impact scenarios.
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Figure 4.24.: SEA against impact ratio at Ḣ = 10ms−1 and a strain level of 20%.

4.5. VARYING THE EFFECTIVE PROPERTIES
As mentioned before, all observations have been made using the target properties

E?
y = 300MPa and ρ?rel = 0.1. In the following section, these observations are

summarized and their applicability and limitations in a wider range of properties are

shown. For this, both E?
y and ρ?rel are individually increased and decreased by a

third. This results in three measures E?
y = 200MPa, 300MPa and 400MPa for

the effective Young’s modulus and ρ?rel = 0.067, 0.100 and 0.133 for the relative

density and all nine combinations of the two effective measures are investigated.

The structures are first designed following the optimization procedure described in

Section 4.2.2 and subsequently investigated in the same way as described earlier.

The behaviour at different configurations is shown in Figure 4.25, while the struc-

tures itself together with their properties can be found in Appendix A.1. In the figure,

the SEA is plotted for different impact ratios ri at 20% compression level for dy-

namic compression at Ḣ = 10ms−1. The central graph shows the observations at

E?
y = 300MPa and ρ?rel = 0.1.

As discussed earlier, the honeycomb structures show the highest absorption of

energy for no or small lateral material around the impact zone, due to their high stiff-

ness during pure shear and resistance during planar compression. In Section 4.4.1

the development of the Young’s modulus Ey for uniaxial compression, planar com-

pression and pure shear deformation is shown. It is demonstrated, that structures

where the load is carried predominately by axial forces rather than bending mo-

ments experience an increase in Ey whereas structures with more bending loading

during deformation experience a decrease.

The only structure able to gain further benefits from more lateral material is the

re-entrant honeycomb in its 90° configuration, due to the consistently high lateral

pressure wave speeds allowing the involvement of a wide amount of lateral mater-

ial. This is due to the fact, that next to the pure static resistance to impact, also

the dynamic properties play an important role in the response of a patch towards

localized, high rate compression. These dynamic properties are reported in Sec-

tion 4.4.2. Here it is also shown, that the lateral shear wave speeds are smaller
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Figure 4.25.: SEA at 20% compression at Ḣ = 10ms−1.
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than the lateral pressure wave speeds for all architectures. Section 4.4.3 relates

a consistently high lateral pressure wave speed to the energy absorption of the

architectures in impact events. Planar compression and pure shear deformation

are considered the most relevant deformation patterns in impact scenarios. For

these two deformation patterns, it is essential for both critical factors, stiffness in

the loading direction (Ey), and the lateral pressure wave speed (cPx
), to remain at

a high level in order to absorb the most impact energy. Comparable results can be

achieved in all investigated configurations.

It should be noted, that the rotated re-entrant honeycomb structure at E?
y =

200MPa and ρ?rel = 0.1, the antichiral structures at ρ?rel = 0.067, and the rotated

regular honeycomb structures at ρ?rel = 0.133 show a different behaviour than their

counterparts at E?
y = 300MPa and ρ?rel = 0.1. However, these different observa-

tions can be explained by differences in the evolution of the equivalent properties

during the discussed simple deformation modes.

4.6. CONCLUSION
The Poisson’s ratio alone is not sufficient to explain the differences in elastic impact

mitigation behaviour between different lattice architectures. The working mechan-

isms of the lattice must be taken into account as well to explain these differences.

While the exact internal deformation patterns are complex and highly dependent on

the exact boundary conditions, a clear dependency can be established between the

static properties and the ability of the architectures to adsorb and disperse energy.

The evolution of the stiffness in the direction of impact, as well as the lateral pressure

wave speed through the deformation modes typical for impact scenarios, namely

planar compression and pure shear deformation, give an indication of the perform-

ance of the architecture in highly localized impact scenarios. First, the stiffness in

loading direction must remain sufficiently high under both planar compression and

pure shear deformation. In particular, architectures that exhibit folding in the im-

pact direction, which results in higher axial loading of the members, show stiffer

responses throughout deformation. However, they are prone to buckling in their

axially loaded members, which can cancel this effect. Second, the lateral material

involvement, here estimated by the lateral pressure wave speed, must remain at a

sufficiently high level during deformation to allow the impact energy to be distributed

to the surrounding material.

The choice of the optimal material architecture is a difficult task when design-

ing protection concepts for different kinds of threats and environments. This work

provides the design engineer with a first insight into the effects of different architec-

tural choices in mechanical metamaterials used in impact protection scenarios. It

also provides a solid foundation for further investigation into dynamic deformation

patterns of architected materials by demonstrating the effects of geometry in an

elastic setting.
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It has been demonstrated that auxetic materials, characterized by a negative Poisson’s ratio, offer

enhanced resistance to indentation, shear forces, fracture toughness and the absorption of energy. As

such, they are reported in literature to be promising options for impact mitigation in military and space

contexts. Auxetic materials are rare in nature, and must therefore be designed and manufactured

artificially in order to be applied. Densification of auxetic materials in order to absorb impact energy

in a limited area has been the focus in the literature to date. However, this results in a concentration

of the force paths, which is not desirable for impact mitigation. In this work, the effects of auxetic

densification on the stress distribution over the backside of the auxetic material are addressed using

both experimental and simulative trials. In this study, the distinction between auxetic and conventional

honeycombs in force transmission characteristics is examined. This is achieved through an analysis

of experimental data and the utilization of numerical techniques to enhance comprehension of the

internal mechanisms of architected materials in response to impact.

this chapter is integrally extracted from T. Gärtner, R. Dekker, D. van Veen, S. J. van den Boom and

L. Amaral. ‘(In)efficacy of auxetic metamaterials for impact mitigation’. Int. J. Impact Eng. 206, 105402

(2025)

https://doi.org/10.1016/j.ijimpeng.2025.105402
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5.1. INTRODUCTION
Lightweight impact protection, formerly a concern of aerospace designers due to

the typical weight constraints of aircraft, has also become of interest for other ap-

plications such as vehicles, ships and infrastructure protection. Lightweight design

allows for more fuel efficiency and better mobility of platforms [Fin00], and also for

using less material in infrastructure construction, contributing to sustainability goals

and energy efficiency. Amongst different innovative solutions for lightweight impact

protection, auxetic structures have received significant attention in recent research

[Boh&al23; Gal&al24; Ren&al18]. Due to the negative Poisson’s ratio of auxetic ma-

terials, densification occurs when such materials are impacted, drawing material

towards the impacted area, such as illustrated in Figure 5.1. Because of this neg-

ative Poisson’s ratio effect, auxetics are often considered as promising candidates

to include in lightweight impact protection [Boh&al23; Gal&al24].

Given the absence of natural materials exhibiting negative Poisson’s ratio, aux-

etic structures need to be architected from artificial materials to exhibit such neg-

ative Poisson’s ratio for practical use. Whilst creating auxetic foams is possible

[Cri&al13], in impact protection literature the negative Poisson’s ratio is however

mostly achieved by designing auxetic lattice structures [Boh&al23], such as exem-

plified by the unit cell in Figure 5.2b. These unit cells can be repeated to create a

larger lattice structure with properties resembling the unit cell. Figure 5.2a shows

the conventional honeycomb (CH), a non-auxetic unit cell, while Figure 5.2b shows

the auxetic re-entrant honeycomb (ARH), an auxetic unit cell. The use of such aux-

etic lattices for impact protection reaches back decades [SDC16], but widespread

experimentation with such designs has recently become popular due to advances

in manufacturing techniques such as 3D printing. Whilst experimental campaigns

require significant efforts in time and money, FE modelling approaches provide

a fast way to supplement the experimental findings and have been a staple in

designing and improving auxetic materials in the last decades [Gal&al24]. Within

the FE modelling, one can speed up the computation even further by abstracting

the present structure into its structural elements instead of viewing the structure as

three-dimensional solids (e.g. [Gär&al24; Kap&al23; Wee&al23]).

ν > 0

(a)

ν < 0

(b)

Figure 5.1.: (a)Positive Poisson’s ratio materials (ν > 0) and (b) negative Poisson’s
ratio or auxetic materials (ν < 0) under compression.
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h

l

θ

t

(a) Conventional honeycomb (CH)

h

l θ

t

(b) Auxetic re-entrant honeycomb (ARH)

Figure 5.2.: Comparison of (a) conventional and (b) auxetic re-entrant honeycomb

lattice structures.

Because the beneficial properties of auxetic materials are promising in the search

for lightweight impact protection, a plethora of studies on auxetic lattices used as

blast and ballistic protection has been published in the past years, many of them

focusing on the ARH as a simple auxetic solution [Boh&al23]. Although such stud-

ies indicate the ARH almost unanimously as a better choice for impact and blast

protection than conventional lattices [Boh&al22; Boh&al23; Qi&al17], the published re-

search fails to articulate why or how designers should incorporate such auxetic

lattices in real applications, and what design parameters the designer should focus

on to enable impact mitigation.

Protective

Structure

Protected Structure

(a) (b) (c)

Figure 5.3.: Illustration of an example where auxetic lattices might be detrimental to

the structure to be protected. (a) Unloaded structure; (b) structure with

positive Poisson’s ratio under load; (c) structure with a negative Pois-

son’s ratio under load. Contact area is larger for structure with positive

Poisson’s ratio, transferring smaller stresses to underlying structure.

Dashed lines represent the shape of the undeformed structure.
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Consider, as an example, the illustration in Figure 5.3. Materials with a positive

Poisson’s ratio will spread the load onto a wider area, as illustrated in Figure 5.3b.

Negative Poisson’s ratio materials (Figure 5.3c) on the other hand, concentrate the

load onto a smaller area. This effectively means that the distributed force results

in less pressure being exerted on the protected structure. This anecdotal example

aims to illustrate in simple terms that not in all cases auxetic protection systems

will outperform non-auxetic conventional protection systems, contrary to what is

concluded in [Boh&al23].

Compared to the non-auxetic CH, the ARH has been shown to fold more easily

upon impact, leading to earlier densification [Liu&al16; Qi&al17]. This earlier densific-

ation is related to the inwards folding of the ARH structures, generating the auxetic

effect. Once the material is densified, it acts as a conventional solid material and

thus generates a substantially higher stress level, contributing to energy dissipa-

tion. Available research focuses its conclusions on the higher energy dissipated by

auxetic lattices [Liu&al16; Qi&al17], to claim the better performance in impact scen-

arios, but little is reported about other metrics to evaluate performance under impact

and where this dissipated energy goes to. The effects of high peak reaction forces

generated by the impacted ARH due to its densification, being transferred to the

underlying structure, is currently not addressed in the available literature. The tem-

poral and spatial distribution of the impact energy and the subsequent effects on

the protection capabilities of different lattice structures have not been addressed

in sufficient detail thus far. However, some studies have shown in the past that

load spreading is essential for effective impact protection [GD02]. The transfer of a

substantial quantity of energy over a brief time span to a restricted area, as a con-

sequence of the densification of the distinct lattice structures, may prove detrimental

to the efficacy of the protective measures in question. More specifically, Gupta and

Ding [GD02] mention that absorbing energy is not enough, but that momentum has

to be diverted from the impactor and distributed laterally. The structure underlying

the protective layer is usually not designed to withstand high, localized loads and

thus is dependent on the protective layer to spread out the load over both time and

space. To the best knowledge of the author, the only instance found in literature

where the auxetic lattices are actually shown to transfer less force to the underlying

structure than the CH is described in Bohara et al. [Boh&al22]. The authors show

that, under close-in blast load, the ARH deflects part of the blast overpressure load.

The increased densification of the ARH, by drawing material to the blast-impacted

zone, makes the core stiffer under the close-in blast area andmore compliant on the

edges of the panel, contributing to the deflection of the blast pressure. [Boh&al22]

In addition to the load transfer of single lattice structures, the design paramet-

ers for auxetic lattice structures, including the design choices in relation to impact

loads, had not been discussed in-depth until the investigations in Chapter 4. In this

publication, it is shown that, for the effect of the auxeticity to have the greatest en-

ergy absorption, the impact should be localized and not over the complete length of

the architected material. Localized impact results in the drawing of unloaded ma-
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terial from the sides toward the impact zone, thereby facilitating a wider degree of

densification. Furthermore, the impact energy can be transported further laterally.

However, only geometric non-linear elastic models without contact were used in

that study, and no experimental validation was presented.

It is currently unclear whether auxetic lattices can be shown to outperform con-

ventional lattices in impact protection applications in the real world, particularly in

cases where energy dissipation is not the sole measure of performance. This contri-

bution thus proposes an integrated approach to the design and evaluation of auxetic

lattice structures for protection, which goes beyond mere consideration of their en-

ergy dissipation capabilities. It is important to note that the objective of this study is

not to disprove the use of auxetics. Instead, it is to subject the metrics of perform-

ance applied to auxetics in impact protection, as well as the underlying physical

mechanisms, to rigorous scrutiny. The aim is to provide a better foundation for the

application of auxetic or conventional lattices as protective structures.

5.1.1. OBJECTIVES

The aim of this study is twofold:

Firstly, this study aims to use different metrics to evaluate and compare the per-

formance under impact of both auxetic and conventional lattice structures. The

use of different metrics, such as load transferred to the underlying structure and

the distribution of the pressure at the back-face of the protective structure can give

new insights in the mechanisms of impact protection of different lattices, enabling

the guided design of lattice structures for impact mitigation in relation to different

loading scenarios.

Secondly, in order to produce guidelines for load localization for impact protection

design, the present study aims to test the hypothesis of Chapter 4, which states that

in order for auxeticity to have more effect and a better impact protection, it is crucial,

that the impact is localized and does not cover the complete auxetic lattice surface

area.

To complete the overview of the design and analysis process of auxetic lattices,

the present study combines experiments and non-linear numerical models. Fur-

thermore, this study offers an insight into the numerical assessment methods avail-

able for architected lattices used for impact protection, by showcasing investigations

possible with both detailed, continuum-based and efficient, beam-based numerical

models. The continuum-based numerical model is employed to gain a deeper in-

sight into the details of the inner deformation and load transmission processes of

the experimental campaign. To supplement these investigations, the beam-based

numerical model is chosen due to its efficiency to enable fast explorations into dif-

ferent scenarios.
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5.1.2. ORGANIZATION
The lattice structures analysed are presented in Section 5.2. The different physical

and numerical settings employed to assess the performance of different lattice ar-

chitectures in a protection lay-up are explained in Section 5.3. Subsequently, the

results of the different analyses will be laid out in Section 5.4, and the advantages

and limitations of each analysis will be discussed. A comparison between the differ-

ent methods will be done in Section 5.5, as well as a discussion on the efficacy of

auxeticity in protective systems and the metrics useful in entertaining this assess-

ment and suggestions for further research.

5.2. INVESTIGATED ARCHITECTURES

Table 5.1.: Dimensions, mass and initial elastic stiffness along impact direction of

the unit cells considered in the present study (see Figure 5.2 for the

definitions of the dimensions).
Unit cell l (mm) h (mm) θ (°) t (mm) mass (g) stiffness (GPa)

ARH 4.8831 8.30 35 0.750 5.50 2.49

S
S

ARH90 4.8831 8.30 35 0.820 5.98 2.49
CHW 4.8831 2.65 35 0.854 3.99 2.48
CHL 4.8831 2.65 35 0.884 4.12 2.49

S
M

ARH90 4.8831 8.30 35 0.750 5.50 1.91
CHW 4.8831 2.65 35 1.100 5.04 5.2
CHL 4.8831 2.65 35 1.100 5.04 4.71

Table 5.2.: Dimensionless properties of the unit cells considered in the present

study
Unit cell rel. density (%) rel. stiffness (%) max. slenderness Poisson’s ratio

ARH 31.25 1.19 11.1 -0.95

S
S

ARH90 33.98 1.19 10.1 -0.77
CHW 22.67 1.18 5.7 0.95
CHL 23.41 1.19 5.5 0.86

S
M

ARH90 31.25 0.91 11.1 -0.80
CHW 28.64 2.48 4.4 0.89
CHL 28.64 2.24 4.4 0.82

This study investigates architected materials, as shown in Figure 5.2, where Fig-

ure 5.2b shows the auxetic re-entrant honeycomb (ARH), an auxetic lattice, while

Figure 5.2a shows a conventional honeycomb (CH), a non-auxetic lattice. The

ARH has been chosen as the baseline auxetic lattice for comparison. This choice

is based on its widespread use in literature (e.g., [Boh&al22; Boh&al23; Liu&al16;

Qi&al17]), and the dimensions of the baseline ARH are described in Table 5.1 to-

gether with the estimated mass and stiffness of one unit cell. The initial elastic

stiffness of the samples in Figure 5.4 was estimated using linear elastic, small de-

formation FE analyses considering an elastic modulus of 210GPa and a Poisson’s

ratio of 0.265, corresponding to the steel grade used to manufacture the samples.



5

100 5. Effıcacy of auxetıcs ın physıcal ımpact sımulatıons

(a) ARH (b) ARH90 SM (c) ARH90 SS

(d) CHW SM (e) CHW SS (f) CHL SM (g) CHL SS

Figure 5.4.: Unit cells.

Linear elastic FE analyses were conducted instead of analytical models (such as

the one from Gibson et al. [Gib&al97]) to estimate the initial elastic stiffnesses of the

samples due to the relatively thick struts of the lattice structures. In addition, the im-

pact protection performance of the ARH is compared to the same structure rotated

by 90°, in the following called auxetic re-entrant honeycomb (90° d) (ARH90). In

order to shed light on the effects of auxeticity in comparable circumstances, the non-

auxetic unit cells conventional honeycomb (W-configuration) (CHW) and conven-

tional honeycomb (L-configuration) (CHL) are investigated as well. The dimensions

of the struts of the ARH90, CHW, and CHL samples were selected to guarantee

that a set of such samples with the similar mass (SM) as the ARH is obtained. Ad-

ditionally, another set of unit cells with the same initial elastic stiffness (SS) as the

ARH in the impact direction is designed and evaluated throughout the study. The

unit cells of each investigated lattice are illustrated in Figure 5.4, while the unit cell

masses, dimensions and initial elastic stiffnesses are described in Table 5.1. In or-

der to give a better estimation for the overall behaviour of the unit cells, the relative

density and relative stiffness related to the base material are reported in Table 5.2.

In this table, also the maximum slenderness, i.e. the length of the longest beam

divide by the thickness of the beams is reported. It can be seen, that the re-entrant

types are more slender, and thus more prone to buckling. The vertical Poisson’s ra-

tio relates the horizontal compression or extension with the compression in impact

direction and is reported in Table 5.2 as well. It should be noted here, that the Pois-

son’s ratios greater than 0.5 reported for the honeycomb unit cells do not violate any

bounds on the Poisson’s ratio given the orthotropic nature of these metamaterials.
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Figure 5.5.: Static compression response of single unit cells.

In addition to the initial elastic stiffness, quasi-static stress-strain curves were ex-

tracted for the investigated unit cells. These investigations were done using fully

nonlinear FE analyses using planar boundary conditions, that ensure all edges re-

main plane but are free to move. The resulting curves are shown in Figure 5.5 up

to the point of full densification. The onset of plasticity after around 1% compres-

sion is clearly visible in all architectures. Within the elastic range of deformation,

the differences in initial stiffness between the architectures are emphasized, partic-

ularly the substantially increased stiffness of the CH architectures of similar mass.

This results in a higher stress at the yield point and subsequently higher stresses

throughout the plateau stage. Comparing the SS and SM variants of all unit cells,

the higher initial stiffness reported in Table 5.1 also correlates with a higher en-

ergy absorption potential in all cases. It should be noted as well, that buckling of

the load-carrying beams at the lateral edges of the ARH90 and CHL unit cells is

prevented by the planar boundary conditions. This results in an overestimation of

the stresses for these particular unit cells. The effects of contact can distinctly be

seen in all architectures up to the point of total densification. The auxetic structures

densify earlier due to their convex nature. As densification leads to direct force

transmission through the sample, the longer plateau phase of the CH architectures

is beneficial in practical applications if sufficient to absorb the impactor’s energy

before densification.

5.2.1. SAMPLE CONFIGURATION
The previously described unit cells are assembled into lattice structures with two

sizes of the entire patch: One size, in the following denoted as Length 1, has approx-

imate measures of 65mm × 65mm. A sample twice as wide and denoted as Length

2, measures approximately 130mm × 65mm. To achieve these measures multiple

units cells were stacked both vertically and horizontally, with a base of solid steel,
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(a) (b)

Figure 5.6.: Assembly of ARH unit cells into patches to be investigated, (a) Length

1 and (b) Length 2.

Table 5.3.: Measured or estimated mass of the auxetic samples which are shown

in Figure 5.6. The samples of Length 1 were not measured with a digital

scale but, instead, the mass was estimated via CAD model assuming a

density of 8000 kgm−3.
Unit cell Length 1 Length 2

nx ny mass (g) nx ny mass (g)

ARH 6 8 733.08 12 8 976.75

S
M

ARH90 8 6 733.15 16 6 977.05
CHW 6 8 732.61 12 8 970.15
CHL 8 6 732.75 16 6 971.21

S
S

ARH90 8 6 742.35 16 6 1023.05
CHW 6 8 669.46 12 8 872.96
CHL 8 6 688.43 16 6 884.48

10mm high, and a strike face on the upper side being 65mm wide and likewise

10mm high. The physical samples produced for the ARH architecture are shown

in Figure 5.6 for both lengths investigated. An overview over the number of unit

cells in each direction and the resulting mass for the samples is given in Table 5.3.

These patches with a depth of 25mm are investigated for all further experimental

and numerical studies unless otherwise noted.

5.2.2. TEST MATRIX

Table 5.4.: Physical & numerical investigation matrix.
Unit cell Length 1 Length 2

ARH physical/numerical physical/numerical

S
M

ARH90 only numerical physical/numerical
CHW only numerical physical/numerical
CHL only numerical physical/numerical

S
S

ARH90 only numerical physical/numerical
CHW only numerical physical/numerical
CHL only numerical physical/numerical
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In order to assess the effects of the different lattice architectures as well as the

effect of localization of an impact, as was suggested in Chapter 4, all architectures

are tested according to the test matrix shown in Table 5.4. A physical comparison

for the effect of impact localization between the Length 1 and Length 2 samples is

experimentally carried out only for the ARH as baseline architecture. For the other

lattice architectures physical experiments for Length 2 samples and additional FE

analyses for the Length 1 samples are conducted.

5.3. METHODS
5.3.1. EXPERIMENTAL SET-UP

sample

force
sensor

force
sensor

plunger 90mm accelerator

fresnel lense

camera

camera

Figure 5.7.: Schematic view of the experimental set-up.

SAMPLE MANUFACTURING
The samples, with geometries as described in the previous section, have been

manufactured by electric discharge machining (EDM). EDM was chosen for its

tight geometric tolerances, which are required to ensure that the radii in the corners

of the structures are sufficiently small to ensure that the physical samples resemble

the desired structures. EDM is an inherently precise method, with the accuracy

only limited by the size of the electrode, and maintains this accuracy for relatively

large material depths.

A good material for lattice samples in impact condition will have a high yield

strength and stiffness, in combination with being very ductile. These properties

ensure sufficient energy can be dissipated during the deformation. The only condi-

tion that EDM poses on the material is that it conducts electricity, rendering metals

a prime choice. After careful evaluation 316 stainless steel (AISI 316L) was chosen
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for producing the sample set later used in the experimental campaign. This wasmo-

tivated mainly by the high strain to failure (> 25%), ensuring the structure folding

neatly without hinges breaking and losing structural integrity. This high toughness

additionally absorbs a significant amount of energy in the process.

TESTING SET-UP

Figure 5.8.: Side view of the sample mounting in the experimental set-up with main

dimensions and components - dimensions in mm.

For the test series, the lattice samples manufactured by EDM were attached to a

30mm thick steel base using four M10 bolts. A construction drawing of this set-up

can be found in Figure 5.8. The base was then attached to a stiff boundary using

four M16 bolts and 4 Piezoelectric ring force transducers from the brand Kistler,

type 9104C. The Kistler ring force transducers have a load limit of 160 kN and an

axial stiffness of 7.5 kNµm−1 per transducer. All lattice samples were impacted by

a plunger with a mass of 1.2 kg and made of aluminium. The experimental set-up is

shown in Figure 5.9, while drawings of the plunger are shown in Appendix B.1. All

tests are carried out with a nominal impact velocity of 70ms−1. The experimental
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(a) Position of the camera with

Fresnel lens.

(b) Shooting barrel and camera pointing at the

sample.

Figure 5.9.: Experimental set-up.

procedure was recorded digitally by two high-speed cameras at 25 000 fps, one

directed at the lattice to capture its performance, and the other at the plunger mid-

flight to assess the projectile orientation and velocity. A schematic overview over

the entire set-up can be found in Figure 5.7.

5.3.2. CONTINUUM-BASED FE
Explicit non-linear FE analyses were performed using the commercial software

package ABAQUS. An example of a simulated assembly is given in Figure 5.10,

which consists out of the lattice specimen and the plunger impacting the specimen.

The specimen is fully fixed at its support and the 1.2 kg weighing plunger is given an

initial vertical velocity, matching that of the experiments. The plunger was modelled

in a simplified manner, as a rectangle of 20mm height and 65.4mm width (compare

Figure 5.10). Note that, in order to maintain the mass of the plunger the density of

this block was adjusted to 36 703 kgm−3. All contact interactions were modelled

by hard normal contact and frictionless tangential behaviour. The simulation were

sample

plunger (v ≈ 70ms−1)

Figure 5.10.: Geometry, boundary conditions and initial conditions for the FE ana-

lyses.

performed in 2D, assuming plane strain, where the depth of the specimen and the

plunger were set to 25mm. Four-node quadrilateral elements with reduced integ-

ration (type CPE4R), having an average element size of 0.12mm, were used. This
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resulted for the ARH sample of Length 2 in 192 520 elements and 438206 DOFs.

A close-up of the mesh showing two unit cells is given in Figure 5.11. As indicated

Figure 5.11.: Close-up of the mesh for two unit cells.

earlier, the lattice is made out of stainless steel and the plunger out of aluminium.

Both materials were simulated using a Johnson-Cook plasticity model to account

for strain rate effects [JC85]. In this model, the von Mises yield surface is described

by

σ̄ =
[
A+B

(
ε̄pl
)n] [

1 + C ln

(
˙̄εpl

˙̄ε0

)]
, (5.1)

with the equivalent plastic strain ε̄pl, the equivalent reference strain rate ˙̄ε0 and the

numerical parameters A,B,C, n. These properties and parameters used for both

materials, following from literature [Spr11; UMO07], are given in Table 5.5.

Table 5.5.: Material properties and parameters for the FE simulation.
Material E [GPa] ν [−] A [MPa] B [MPa] C [−] n [−] ˙̄ε0 [−] ρ [kgm−3]
Stainless Steel [UMO07] 210 0.265 280 1750 0.1 0.8 0.02 8000

Aluminium [Spr11] 72 0.33 103 350 0.12 0.4 0.001 36703*

* Note that the density of aluminium is chosen such that the plunger mass is equal to 1.2 kg and is therefore not equal
to the real density of aluminium.

5.3.3. BEAM-BASED FE

sample

spring-mass system

plunger emulation (v = 70ms−1)

Figure 5.12.: Geometry and boundary conditions for the JIVE analyses.
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The structures investigated can be viewed as a collection of beams into a lat-

tice. In order to accelerate and simplify the simulations described in Section 5.3.2,

and to allow for a faster processing of different configurations, these lattice struc-

tures are also implemented as a collection of Simo-Reissner beams as described in

Chapters 2 and 3. This results for the ARH sample of Length 2 in 16 824 DOFs, which

is a reduction by more than one order of magnitude compared to the continuum-

based model in Section 5.3.2.

The material of the structure is modelled as elastoplastic beams with kinematic

hardening as presented in Chapter 3. For the elastic behaviour a Young’s modulus

of 210GPa and a Poisson’s ratio of 0.265 are assumed in accordance with the

assumptions in the solid model. The beams are modelled as square beams with a

side length of 0.75mm and the shear correction coefficient is set to 5/6. The yield

function

Φ =

∣∣∣∣ N1

71.8N−Nh
1

∣∣∣∣2.68 + ∣∣∣∣ N3

164N−Nh
3

∣∣∣∣1.75
+

∣∣∣∣ M2

30.8Nmm−Mh
2

∣∣∣∣1.93 − 1,

(5.2)

with the stress resultants N1 for the shear force, N3 for the axial force, M2 for the

bending moment, and the corresponding hardening contributions Nh
1 , N

h
3 , M

h
2 , is

accompanied by the kinematic hardening tensor

H =

936N 1630N 618Nmm

2800N 907Nmm

sym. 443Nmm2

 . (5.3)

Further details on the elastoplastic beam formulation and their scaling for different

beam sizes can be found in [Gär&al25b; SKS20] and are not part of this contribution.

For an adequate model of the beam connections slight modifications to the beam

geometry have been applied. In accordance with [Kap&al23], the last elements in

each beam are assumed purely elastic and thickened by a factor of 1.25 for the

stiffness calculation and thinned by a factor of 0.75 for the inertia calculation. For

the contact of the beams, all contact penalty parameters described in Section 2.3

are set to εSTS = εNTS = εNTN = 4 × 106. No self-contact within a singular beam is

modelled, as this effect is not observed in the experiments.

The set-up for the beam-based FE analyses is shown in Figure 5.12. Notable

differences to the solid-based analyses in Section 5.3.2 are the emulation of the

impactor at the upper side by adding a virtual mass totalling 1.2 kg to the nodes on

the impact surface, as well as the replacement of the lower plate by a “beam” acting

as a spring-mass system emulating the baseplate.
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5.4. RESULTS
To ensure the comparability of the different models, they were in a first step com-

pared to each other. For this comparison ARH samples of both lengths were used.

The total force recorded at the back face is shown over the time for all three models

in Figure 5.13. One should note here, that the stopping points for all models are
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(a) Length 1 (b) Length 2

Figure 5.13.: Comparison of the three models from Section 5.3 for ARH samples

of (a) Length 1 and (b) Length 2.

different, the experiment stops as soon as the total recorded force reaches 0N, the

continuum bases simulations are run for 1.3ms and the beam-based simulations

are run until the plunger velocity reaches 0ms−1.

When comparing the force recordings, an overestimation of the forces in the FE

models can be observed. Such overestimation can be explained by the fact, that

in the experiment the backing is not infinitely stiff, whereas the simulations assume

a fully rigid boundary condition. In the high-speed videos a flexing motion of the

backplate is observed, despite the best efforts to obtain a stiff test set-up. This

effect of overestimating the force levels is also seen for all other simulations of the

experimental cases described in Table 5.6. The comparisons for other architectures

are shown in Appendix B.2. In general all simulations show higher force levels as

well as a higher initial peak. Both of these phenomena can be explained by the rigid

backing assumed in the simulation.

As the over-prediction of the force is a phenomenon observed in the correlation

of all simulations with their respective experimental cases and not severe, the simu-

lations were deemed trustworthy for the assessment of differences in the behaviour

of different architectures. However, it was decided to exclude the first 0.15ms from

the computation of integral measures, such as the average or maximum pressure,

in order to exclude the effects of the higher initial peak.

Further illustration for all models is provided in Figure 5.14. In this figure, the

Length 2 ARH sample is shown in all three investigation settings after 0.25ms. Here,

it is observable, that both FE models show a stronger indentation of the plunger

compared to the experimental model, which is again explained by the higher forces

due to the rigid backing. Other than that, despite not matching the deformation
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(a) Experiment

(b) Continuum-based FE

(c) Beam-based FE

Figure 5.14.: Comparison of the deformation of the Length 2 ARH sample at 0.25ms.

(a) is showing the experimental image, (b) the continuum-based FE

result, and (c) the beam-based FE result.
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of each singular member in the lattice precisely, the overall deformation pattern

between the experiments and the FE models match closely. Especially the start

of the densification in the upper end of the sample as well as stronger densification

around the edges of the strike-face are matched well. This confirms the assessment

based on the total force recordings, that the models are comparable and valuable

insights can be gained by exploring all three models available.

5.4.1. EXPERIMENTS
The first set of experiments were conducted on the baseline ARH for both patch

configurations, Length 1 and Length 2. Both samples are displayed in an undeformed

state in Figure 5.6. The corresponding recorded forces on the back-face are shown

in Figure 5.15 over time measured from the initial contact between the plunger and

the front face of the sample. In this figure it is observed that the initial part of the
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Figure 5.15.: Experimental comparison of samples sizes for ARH.

load is lower and more stable for the globally impacted sample of length 1. How-

ever, a large peak in the measured reaction force occurs after 0.8 s, followed by a

subsequent sharp drop to 0N. In contrast, the sample of Length 2 exhibits a more

dispersed impact load (and, consequently, impact energy) over time, maintaining a

relatively constant transmitted force until the plunger is fully stopped. This compar-

ison indicates that the surrounding material is crucial for the determination of the

protection level of a structure. From the level of force, a localized impact is to be

preferred in order to spread out the momentum transfer over a longer time resulting

in a lower peak force throughout the time.

Subsequent experiments were conducted to compare other auxetic and non-

auxetic architectures, as specified in Table 5.3, with the baseline ARH sample

described above. The actual impact velocity and masses of each plunger were

measured and are described in Table 5.6. In the first series, all four samples were

designed to have the same initial elastic stiffness. Figure 5.16a shows the force

summed up over the sensors plotted over time. Note that the force measurements

due to the rebound of the plunger are not shown here as they are not the focus of

this research. Both auxetic structures—ARH and ARH90 SS—show a distinct peak
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Table 5.6.: Recorded plunger velocities and masses.
Unit cell velocity (ms−1) mass (g)

ARH Length 1 74 1202
ARH Length 2 71 1199

S
S

ARH90 Length 2 76 1202
CHW Length 2 75 1199
CHL Length 2 75 1202

S
M

ARH90 Length 2 72 1200
CHW Length 2 77 1199
CHL Length 2 73 1192

in the force curve. Upon examination of the high-speed videos, it can be observed

that this correlates with the point at which the material is approaching complete

densification. Consequently, the subsequent deceleration of the plunger is solely

due to material compression, requiring significantly greater forces compared to the

lattice deformation in the earlier stages of the impact. Stills from the high speeds

videos of both— ARH and ARH90 SS—can be found in Figure 5.17. In contrast,

the conventional honeycombs in both orientations do not show a distinct peak, but

rather a slower deceleration at lower forces. Here, due to the positive Poisson’s

ratio of the material, the structural members of the lattice are laterally pushed away

from the impact location. This effect spreads the load over a larger area, as the

laterally pushed away material deforms as well. This lateral deformation can be

observed in Figure 5.18, where stills of the high speed videos throughout the de-

formation are shown for both CH SS configurations. The details of this spatial load

distribution were investigated further in the numerical experiments.

Another comparison is undertaken with the lattices designed to exhibit a similar

mass as the ARH baseline architecture. The corresponding measured forces over

time are shown in Figure 5.16b. The ARH curve is the same as in Figure 5.16a,

as this architecture is used as baseline. The rotated auxetic structure ( ARH90)

possesses a less distinct, more flat peak. The CH curves are higher than the
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Figure 5.16.: Force comparison for same (a) stiffness and (b) mass from the phys-

ical tests.
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ARH

ARH90 SS

0.0ms 0.5ms 1.0ms

Figure 5.17.: Stills from the high-speed recordings for both auxetic architectures.

CHL SS

CHW SS

0.0ms 0.5ms 1.0ms

Figure 5.18.: Stills from the high-speed recordings for both non-auxetic architec-

tures.
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Figure 5.16a curves, due to the higher stiffness resulting from the thicker beams due

to the equivalent mass design target. These higher initial stiffnesses are recorded

Table 5.1. Both conventional honeycombs show the same peak-less behaviour as

described for Figure 5.16a, but at a higher level.

5.4.2. CONTINUUM-BASED FE
In order to enhance understanding of the physical experiments, numerical simula-

tions were conducted as detailed in Section 5.3.2. Simulations allow the extraction

of data from any point, without any physical restrictions and effects on the results.

Of special interest in the context of impact mitigation is not only the total force trans-

mitted to the back of the protective structure, but also the pressure distribution over

the back face. For this the average and maximum pressure onto locations of the

back-face were computed over time, with the exclusion of the first 0.15ms as de-

scribed above. The average pressure over the back-face is shown in Figure 5.19b

for all architectures with the same stiffness. This average pressure distribution in
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Figure 5.19.: Comparison of the average pressure over the back-face for the SS

configuration using the continuum-based model.

Figure 5.19b shows that the auxetic densification leads to a concentration of the

forces on a smaller area, resulting in a higher pressure onto the protected structure

at the back of the plate. It should be mentioned that the highest average pressures

for the non-auxetic structures are at the edges of the lattice structure, indicating, that

the length of the CH samples is not sufficient to spread the load effectively. This

is emphasized by the observation of similar pressure distributions in the samples

with only the single width, as shown in Figure 5.19a. Here the auxetic samples

concentrate the force in the centre, resulting in higher pressures onto the backside,

whereas the non-auxetic samples distribute force to the boundaries. A point to note

here is that the CHL architecture also shows a slight peak in the centre of the struc-

ture. This can be explained by the deformation of this unit cell leading to auxetic

behaviour, as discussed in Chapter 4.
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Figure 5.20.: Comparison of the maximum pressure over the back-face for the SS

configuration using the continuum-based model.

Similar observations can be made upon examination of the maximum pressure

on the backside. For the Length 2 samples, this is shown in Figure 5.20b and for the

Length 1 samples in Figure 5.20a. The load spreading effect is less distinct, but still

observable in the plot showcasing the Length 2 samples. In the plot with the Length

1 samples the discussed effects of CHL architectures becoming auxetic is even

more prevalent. This is also observable in the deformation throughout the physical

experimentation in Figure 5.18. Similar behaviour can be seen in Appendix B.3 for

the SM configuration.

5.4.3. BEAM-BASED FE
Using the more efficient beam-based model, investigations into wider samples are

available for fast computation. For this, all SS samples reported in Table 5.1 as

Length 2 are elongated in the horizontal direction again, leading to a doubling of the

unit cells in x-direction, whilst all other boundary conditions are kept the same. In

Figure 5.21, again, the recorded total force on the back-face is shown over time.

The solid lines represent the samples of Length 2, whereas the samples of Length 4 are

shown in dashed lines. No substantial difference between the two sample widths

can be observed, indicating together with the results from the continuum-based

simulation, that the increase in length does not affect the total force transmission

profile, but only the pressure distribution. The same accordance between the con-

figurations can be found when examining the results for the SM configurations in

Appendix B.3.

Another additional study enabled by the structural FE modelling is the change

of the unit cell size. For this, unit cell sizes are halved and the number of unit cells

reported in Table 5.1 in each direction is doubled in order to have the same outer

measures for each sample. This leads to a quadrupling of the overall number of unit

cells whilst keeping the mass the same. In Figure B.6 the comparison between the

two investigated sizes is plotted for the samples of Length 1 in the SS configuration.
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Figure 5.21.: Comparison of longer samples for the SS configuration.
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Figure 5.22.: Comparison of smaller unit cells for the SS configuration of Length 1

using the beam-based model.
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In this graph, the force on the back-face is shown for all different unit cells over the

time. The default unit cells of Size 1 are shown in solid lines, whereas the adapted

unit cells of Size 0.5 are depicted with dashed lines. In the graph it can be observed,

that reducing the size of the unit cells does not lead to any significant change in the

transmitted forces. The same effect is also seen in the Length 2 samples, as well as

in the SM configuration samples, which can be found in Appendix B.3.
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Figure 5.23.: Deformation patterns of the ARH sample of Length 1 at different impact

velocities and compression states.

In order to appreciate the effect of velocity additional studies at different velocit-

ies were carried out. In these investigations, the mass of the impactor was kept

the same, but the speed was adapted, so that the kinetic energy or the impulse

of the impactor were doubled and halved, respectively. For a doubling of kinetic

energy, the velocity of the impactor needs to be multiplied by
√
2, and for halving it

divided by
√
2 likewise. This resulted in the list of 35m/s, 49.5m/s, 70m/s, 99.0m/s

and 140m/s as investigated speeds, including the original study. In Figure 5.23,

the ARH architecture is showcased for all 5 investigated speeds and at 5%, 10%,

15%, 20% and 25% compression each. One should note, that the visualizations

at the same compression level do not correspond to the same time, as the com-

pression occurs faster at higher impactor velocities. In the central row, the speed
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discussed in the previous parts of this study is shown. The deformation pattern

emerging at this speed showcases a V-shaped manner, similar to the transitional

mode discussed in [Rua&al03]. As reported in literature, for higher velocities a trans-

ition and concentration of the dynamic collapse zone towards the strike face can be

observed. For lower velocities, we observe the emergence of the collapse pattern

from the bottom of the patch. When inspecting the lateral contraction, the Poisson

effect appears to be weakening with increased impact velocities. At the target velo-

city for this study of 70ms−1, the lateral contraction is still clearly visible throughout

the sample, indicating the applicability of this speed for studying the effects of the

Poisson effect. This can also be seen in Figure 5.24, where at lower speeds the

effect of the negative Poisson’s ratio is showcased by material being pulled towards

the centre, whereas for higher speeds, the effect is subdued by the inertia of the

material. Similar effects can be observed for the other investigated materials as

well, they are shown in Appendix B.4.
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Figure 5.24.: Deformation patterns of the ARH sample of Length 2 at different impact

velocities and compression states.
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5.5. DISCUSSION & CONCLUSION
Looking back at the experimental campaign that resulted in the transmitted force

onto the underlying material after a localized impact, it is first observed, that higher

stiffness leads to more direct force transmission. Whilst all samples are able to ab-

sorb the impact energy, this showcases CH structures outperforming ARH struc-

tures when the main concern is energy absorption in a limited area with a given

weight, as they were able to do so in a shorter time. Reducing this stiffness allows

the energy absorption to be spread out over a longer time for the CH samples, that

are not stiffening unlike the ARH samples. This spread of the energy absorption

results in lower total force levels on the back-face of the protective structure, poten-

tially reducing the load on the precious load being protected by the lattice, which is

beneficial for the protection as reported by Gupta and Ding [GD02]. While under

blast loading, the more compliant edges can help distribute the force, as reported

by [Boh&al22], due to the external load spread inherent to a blast. Under ballistic

impact, the load is naturally concentrated and thus negative Poisson’s ratio and

the corresponding densification and stiffening lead to a further concentration of the

load.

These finding are reinforced by the additional numeric studies into the load spread

on the back-face of the material. Here, it can be summarized, that in the given con-

text, a negative Poisson’s ratio in the material leads to higher peaks in the loading

on the backside of the protective structure also in space. This effect is especially

pronounced when comparing the structures with comparable stiffness. When look-

ing at structures with equivalent mass, the higher stiffness of the conventional ar-

chitectures has a stronger effect compared to its load distribution effect. Overall it

has been shown, that higher stiffness improves the energy absorption qualities in

a confined space, but also lead to worse protective properties due to higher force

peaks onto the back-face of the protective structure.

Thus, it can be concluded that the impact mitigation efficacy of auxetic materials

only appears in the case, where energy absorption and the need to limit the de-

formation of the protective structure at a given stiffness are the main measures. In

other cases, especially when the spreading of the load or lightweight design of the

protective structures are of interest, auxetic structures are not able to spread the

load of a localized impact and perform worse than conventional honeycombs when

considering equal mass even in pure energy absorption measures.

Lastly, investigations with different scenarios as well as size effects using faster,

albeit less accurate, beam-based simulations were conducted to explore other

patch configurations. In the first trial, the investigation into even longer samples

lead to no significant difference between patches of Length 2 and Length 4, emphasiz-

ing the assumption that the earlier investigations are representative of a local impact

onto a wide structure. The contradiction with Chapter 4, where wider samples are

suggested to be required for assessment of the performance of the structure, can

be explained by the limitation to elasticity in that study, whereas plasticity, especially

in this dynamic environment, can lead to higher localization, which prevents further

spreading of the load. To this end as well, different unit cell sizes were compared

in another investigation. Here no significant effect was observed, leading to the
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conclusion, that the investigated number of unit cells reported in Table 5.3 can be

taken as sufficient to not experience significant boundary effects. This is especially

valuable when considering the physical tests, where smaller unit cells would require

more refined manufacturing, that might be limited by technological or budgetary

constraints.

This full-scale, physical testing campaign is needed to ensure all physical phe-

nomena have been considered. Physical tests, especially when considering bal-

listic impact studies, require tremendous effort and resources to be conducted and

have, as was demonstrated, difficulties to ensure the boundary conditions envi-

sioned are met with certainty. To this end numerical tests enable faster and less

resource-intensive assessment with properly idealized boundary conditions. In nu-

merical investigations, the placement of sensors is not a matter of physical prac-

ticality, but rather of limiting the amount of data, enabling a better understanding

of the inside processes in the material and the detailed interactions with the sur-

rounding structure. As there are different levels of refinement and discretization of

structures, one needs to make good use of all available resources in order to speed

up the design and research process and to further facilitate the understanding and

development of protection concepts.

Summarizing the findings of this contribution, the existing primer of literature, that

auxetics perform better for impact mitigation, has been challenged by data of force

distribution, where simple non-auxetic honeycombs were shown to exhibit better

performance inmultiple configurations. Also, the simple use of energy absorption as

assessment tool for impact mitigation is insufficient in cases where not only the total

energy absorbed by the structure is relevant for the safety of the protected structure,

but also the distribution of the transmitted forces. To this end various numerical tools

were shown to be effective supplements to the physical experiments in order to gain

a deeper understanding, which can be used for the design of protective structures

and further research on this topic. For this further research, the assessment of

different auxetic and non-auxetic structures will be valuable for the community to

ensure that findings can be generalized, as well as a deeper investigation into the

interdependency of the inelastic, strain-rate dependent response and different unit

cell architectures.
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Materials engineered with an internal architecture in order to achieve unusual properties, so-called

mechanical metamaterials, are a promising candidate in the ongoing quest for lightweight impact

mitigation. During impact events, these materials are subject to high strain rates, and the forces

occurring due to the deceleration of the impactor are transmitted in a non-uniform way. The prevailing

research in the field of impact mitigation focuses largely on the global effects of architected materials,

with less attention being paid to the internal mechanisms of these structured materials. While there

have been recent studies on the distribution of forces throughout an impact event, less research is

devoted to the transmission of forces and the distribution of energy dissipation. The objective of this

study is to examine the transition from static deformation patterns to dynamic phenomena for different

types and sizes of microstructure, and to understand both the force transmission through the patch and

the energetic distributions in different strain rate regimes. To enable this investigation discretized—

geometrically as well as materially—nonlinear Timoshenko-Ehrenfest beams are used in implicit and

explicit finite element schemes. The transmitted force levels and energy dissipation are investigated

for two auxetic architectures (one for each mechanism resulting in a negative Poisson’s ratio) and

one non-auxetic architecture. The dynamic force levels transmitted to the back face exhibit an initial

peak of a similar magnitude for all investigated strain rates and stabilize to the static stress plateau

for each architecture. While the global amount of potential energy remains largely unchanged for all

investigated rates, the amount of dissipation and kinetic energy demonstrates a non-linear increase

from static deformation to slow and high rate deformation. The phenomena observed in different

architectures are highlighted, and the differences are explained and related back to the configurations

of the lattices. Notably, the prevalent notion in literature asserting the superiority of negative Poisson’s

ratio materials for impact mitigation applications is not replicated in this study.

this chapter is integrally extracted from T. Gärtner, S. J. van den Boom, J. Weerheijm and L. J. Sluys.

‘Force transmission and dissipation in dynamic compression of architected metamaterials’. engrXiv

(2025). Preprint

https://doi.org/10.31224/5224
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6.1. INTRODUCTION
The engineered microstructure of architected materials achieving unusual mech-

anical properties, resulting in so-called mechanical metamaterials, presents new

opportunities for designers and engineers as well as new challenges for research-

ers [Bon&al24; Jia&al23; SP25]. Of particular interest is the design of metamaterials

for impact mitigation. Impact events, necessitating protective measures, exist in a

wide range of fields, from sports [San&al14] over space travel [PA99], metal roofs

in hailstorms [SS19], collisions between cars and civil infrastructure [Pan&al18] to

personal protective equipment [Cro19]. In all these applications, the aim of the pro-

tective structure is to limit the energy and impulse transmitted from the impactor to

the protected structure, be it a living being or an otherwise fragile material.

In this quest, auxetic (negative Poisson’s ratio) materials have gained consider-

able interest in the research community in recent years, as evidenced by the reviews

[Boh&al23; Ren&al18; SDC16; TZH22]. The negative Poisson’s ratio, which charac-

terizes auxetic materials, leads to lateral material contraction under compression,

as shown in Figure 6.1. For impact mitigation, auxetic materials are of special in-

terest due to reported higher indentation resistance [AGS12] as well as shear res-

istance [CL92]. Other promising properties for impact mitigation include increased

fracture toughness [CL96] and enhanced energy absorption [JH17]. Auxetic ma-

terials naturally compress themselves underneath the impacted area, reportedly

allowing for more mass-efficient protective solutions. However, these assumptions

are based on homogeneous, isotropic materials under infinitesimal, quasi-static de-

formation.

ν > 0 ν < 0

Figure 6.1.: Auxetic materials concept.

As no relevant natural auxetic materials exist, this negative Poisson effect needs

to be artificially created through mechanical metamaterials. Whilst mechanical

metamaterials can be constructed from shells [Mey&al22], plates [GYM22; MTM24],

or as foams [Cri&al13], the focus in this work is on auxetic structures based on struc-

tured beam-lattices. These architected materials are inherently not isotropic and,

as they also undergo large deformations, their material properties vary throughout

deformation. In beam lattices, the individual beams are re-oriented, leading to a

change in the effective material properties, as shown in Chapter 4.
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As shown in Chapter 5 not only the pure energy absorption capability of a struc-

ture is of importance for impact mitigation, but also the—temporal and spatial—dis-

tribution of forces. In this chapter, further investigation is conducted into the distri-

bution of energy dissipation within the structure at varying strain rates for different

refinement levels, alongside the subsequent effects on the force transmission from

the impactor to the protected structure.

The investigation into the energy absorption of protective structures has thus far

focused mostly on the energy dissipated by compression of the structure, and its

conclusions focus on the higher amount of energy dissipated by auxetic lattices

[Liu&al16; Qi&al17]. However, little attention is given to the internal mechanisms and

the distribution of the energies in comparable metamaterials of different architec-

tures. Investigations of different collapse patterns under high speed compression

were undertaken as early as the 1980s [CE84], where a comparison between two

types of structures and their internal collapse mechanism is shown. Ruan et al.

[Rua&al03] investigated different modes of collapse occurring throughout different

speeds in non-auxetic conventional honeycombs with different wall-thicknesses.

More recently, investigations into the static mechanisms in the deformation of meta-

materials, either driven by the boundary conditions [CKvH17] or by the interaction

between local and global collapse patterns [Zha&al25] have been conducted. How-

ever, only one type of fundamental architecture was investigated in all these works,

and a comparison between different auxetic and non-auxetic architectures is yet to

be made. The link between the collapse patterns, dynamic loading and the corres-

ponding force transmission for different types of unit cells is explored in this chapter.

To provide a first insight into this topic, numerical experiments are conducted using

beam-based finite element analyses. For these analyses, three different funda-

mental unit cells, are investigated: a) the most common auxetic type, a re-entrant

honeycomb (cf. [Gib&al97]); b) an auxetic cell based on a rotation mechanism, the

so-called missing ribs or chiral unit cell (cf. [SGE00]); and c) a non-auxetic unit cell,

the regular honeycomb. The three unit cells are designed to exhibit the same rel-

ative density as well as initial stiffness (cf. Chapter 4). Knowledge of the behaviour

of these architectures will allow for better insight into the mechanisms of collapse

under different strain rates. Here, special attention will be paid to the effects of

microstructural refinement and transmission of forces from the strike face of the

protective layer, i.e. the side of the structure subjected to the impact, to its back

face, i.e. the interface with the opposing structure. This enables design engineers

to decide on a protection concept fit for the expected impact events.

The architecture designs for the investigatedmetamaterials are presented in Sec-

tion 6.2, and in Section 6.3 the numerical framework to conduct the investigation is

laid out. In Section 6.4, an investigation into the static behaviour of different sizes of

unit cells in a patch is presented, which forms the basis for the investigation into the

force transmission at different rates through the patch in Section 6.5. To understand

the processes involved in this force transmission better and obtain insight into the

deformation patterns, in Section 6.6, the distribution of energies is presented and

discussed. The chapter closes in Section 6.7 with a short discussion of the obtained

results, limitations of this study and recommendations for further research.
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6.2. INVESTIGATED ARCHITECTURES
The investigated auxetic architectures in this chapter are the same as in Chapter 4.

All architectures investigated are designed to exhibit a Young’s modulus of 300MPa

in vertical direction and a relative density with regard to the basematerial of 0.1. The

material of which the architectures are constructed from is taken to be a steel with a

Young’s modulus of 210GPa, a Poisson’s ratio of 0.3, and a density of 7850 kgm−3.

An in-depth discussion on the static, elastic properties of these architectures, as well

as the design process, can be found in Chapter 4. It should, however, be noted that

the absolute dimensions of the unit cells do not matter for the determination of the

Young’s modulus or the relative density, so that the unit cell can be directly scaled

to the desired measures for the investigations conducted in this chapter.

42.6 mm

100 mm

65.6°

3.45 mm

3.45 mm

Figure 6.2.: Re-entrant unit cell used throughout this investigation.

The first investigated unit cell is the most common auxetic architecture, the re-

entrant honeycomb (cf. [Gib&al97]). Its configuration is shown in Figure 6.2. The

horizontal beam has a length of 100mm, the tilted beams a length of 42.6mm and

the angle between the titled beams and the horizontal is set to be 65.6°. The beams

itself have a square cross-section with a side length of 3.45mm.

37.5 mm

75 mm28.1°
5.83 mm

5.83 mm

Figure 6.3.: Chiral unit cell used throughout this investigation.

In order to also capture unit cells with a fundamentally different deformationmech-

anism, chiral, sometimes called missing ribs, unit cells (cf. [SGE00]) are investig-

ated. Whilst the Poisson effect of re-entrant honeycombs is driven largely by in-

wards folding, the deformation of chiral unit cells is driven by rotation of the joints,

resulting in a mechanism that can also be found in rotating squares unit cells (e.g.

[CKvH17]). The chiral unit cell is depicted in Figure 6.3. The length of a single beam

in the centre is 75mm and the angle between the horizontal (or vertical) axis and
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the beams is set to 28.1°. This results in a width of the entire unit cell of 132mm and

together with a square cross-section of 5.83mm side length, the relative density of

0.1 and the effective Young’s modulus of 300MPa in vertical direction are obtained

as for the re-entrant unit cell.

85.4 mm

75 mm

119.7°

7.08 mm

7.08 mm

Figure 6.4.: Honeycomb unit cell used throughout this investigation.

The final investigated unit cell is the non-auxetic honeycomb as depicted in

Figure 6.4. The horizontal beam has a length of 75mm and the tilted beams

are 85.4mm long. The beams have a square cross-section with a side length of

7.08mm and the angle between the tilted beams and the horizontal is set to 119.7°.

Again, the resulting Young’s modulus and relative density are 300MPa in vertical

direction and 0.1, respectively.

All three unit cells are subsequently assembled into patches. When assembling

these patches, the unit cells are scaled down, to ensure that the overall patch has

the same outer dimensions for each architecture. For the scaling, all geometric di-

mensions, the length of the beams, as well as the dimensions of their cross-sections

are scaled by the same factor. The thickness in the third direction is thus changing

for a different number of unit cells, which is accounted for in the later analyses. A

comparison between two patches consisting of 2 × 2 and 12 × 12 unit cells is shown

in Figure 6.5. In this illustration, the scaling of the singular unit cells to achieve the

same outer dimension is shown.

6.3. NUMERICAL FRAMEWORK
In order to model patches made from the unit cells described above, the lattices are

subsequently modelled as a collection of nonlinear Timoshenko-Ehrenfest beams

as described in Chapter 2. The elastoplastic behaviour of the materials is modelled

as laid out in Chapter 3. A Young’s modulus of E = 210MPa and a Poisson’s

ratio of ν = 0.3 are assumed. The yield function and hardening parameters for a

reference quadratic cross-section of side length 0.75mm is taken to be the same
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w =

165mm

h =

77.7mm

t = 1.72mm

(a)

w =

165mm

h =

77.7mm

t = 0.295mm

(b)

Figure 6.5.: Patches from 2 × 2 and 12 × 12 unit cells, scaled to ensure the same

outer dimensions.

as in Chapter 5 and can be found in Equations (5.2) and (5.3). These parameters

resulted from scaling the reported values from literature [HKS21; HKS22] to the

physical material parameters of the steel used in the experiments in Chapter 5.

Scaling of these parameters follows the approaches laid out in Chapter 3.

Contact between the beams is assumed using the approach laid out in Sec-

tion 2.3. In order to scale the contact stiffness with the size of the contact points,

the penalty parameters are adapted with the thickness of the beams t

εSTS = εNTS = εNTN = 107 ·
(

t

1mm

)2

, (6.1)

as the contact radii around all beams are set to half the beam thickness

r =
t

2
. (6.2)

For the static investigations an implicit Newton-Raphson scheme is employed,

whilst the dynamic investigations are computed using an explicit scheme with

adaptive time stepping as laid out in Section 2.4.

Throughout the analysis, different stress and energymeasures are recorded. The

stress on the strike face is the sum of the resulting nodal forces in vertical direction

on the top boundary divided by the width of the sample w and the thickness t of a
beam. A similar computation is employed for the back face. As the resulting forces

on the strike face are typically acting downwards (in negative direction) a factor of
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−1 is added to obtain positive values:

σstrike = −1 ·
∑

fstrike
wt

, (6.3)

σback =

∑
fback
wt

. (6.4)

The SEA, i.e. the external work put into the system, is calculated by integrating the

sum of the resulting forces on the strike face over the displacement of the strike

face ustrike and normalizing it by the mass of the patch mpatch:

SEA(u) =
1

mpatch

∫ u

0

(∑
fstrike

)
dustrike, (6.5)

where the integration is executed using the discrete values recorded during the

simulation using Simpson’s rule. The potential, kinetic and dissipated energies are

recorded on a nodal basis. The kinetic energy is directly computed from the nodal

velocities and the global mass matrix, whereas the potential and dissipated ener-

gies are calculated per element and subsequently integrated for each node using

standard finite element procedures.

As the time-steps for the different simulations are not identical, and the dynamic

simulations conducted show high-frequency oscillations due to the absence of

damping in the model, all reported measures are created from the average of bins

stretching 0.5% compression each. E.g. the point plotted at 15% compression is

the average of the recorded values between 14.75% and 15.25% compression.

6.3.1. BOUNDARY CONDITIONS

u u u u u u u u

Figure 6.6.: Boundary conditions applied in this investigation at the example of an

8 × 8 patch.
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In order to estimate the behaviour of different patch configurations, a set of bound-

ary conditions mimicking a constant strain-rate setup is applied. An overview of

these boundary conditions can be found in Figure 6.6. On the bottom side, the

patch is fully fixed, whilst at the top side, horizontal movement is prevented and

a vertical, compressive displacement u = ustrike is enforced. The boundary nodes

on the left and on the right side are enforced to deform symmetrically with respect

to a symmetry plane corresponding to the centre of the patch, in order to prevent

globally asymmetric deformation.

Throughout this chapter, different compression rates u̇/h are investigated. As a

reference case static compression is analysed. For the dynamic investigations, the

investigated strain rates are u̇/h = 250 s−1, u̇/h = 1000 s−1, and u̇/h = 4000 s−1.

These rates will be called in the remainder of the chapter slow rate compression

(u̇/h = 250 s−1), medium rate compression (u̇/h = 1000 s−1), and fast rate compres-

sion (u̇/h = 4000 s−1).

6.4. EFFECTS OF THE NUMBER OF UNIT CELLS
As a first investigation, using the boundary conditions described above, the effect

of the number of unit cells within the patch is analysed. For this, unit cells of differ-

ent size are assembled into patches of the same overall size, ensuring the same

elastic tangent properties, as explained in Section 6.2 and shown in Figure 6.5.

This scaling results in e.g. each individual unit cell in a 2 × 2 patch to be twice as

high and wide as each individual unit cell in a 4 × 4 patch. The resulting changes in

the thickness of the patch in the third dimension t are explicitly accounted for when

calculating the stresses in Equations (6.3) and (6.4) and implicitly via the total mass

mpatch when calculating the SEA in Equation (6.5).

6.4.1. RE-ENTRANT UNIT CELLS

0 5 10 15 20 25 30
0

1

2

Compression (%)

S
tr
e
s
s
(M

P
a
)

2x2 4x4 6x6 8x8 10x10 12x12

Figure 6.7.: Stress-strain curves of patches with a different number of re-entrant

unit cells under static compression.
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The behaviour of different re-entrant patches under static compression is invest-

igated first. In Figure 6.7 the static stress-strain curves at the strike face for different

numbers of re-entrant unit cells under compression are shown. All investigated

patches show onset of plasticity at 1% compression. Prior to the onset of plasti-

city, there is some loss of stiffness corresponding with the re-orientation of beams

and the subsequent shift in load-carrying capacity as discussed in Chapter 4. After

the onset of plasticity, as the load carrying capacity of the beams is limited at yield,

nearly no stiffness remains upon further deformation. When the unit cell size is

decreased, a more brittle response is observed. This phenomenon is attributed to

the more pronounced localization resulting from the smaller unit cells, and thus in

less material undergoing large deformations. The hardening in later stages of the

response, most clearly seen for the 12 × 12 patch, is an effect of contact within the

unit cells.

Figure 6.8.: Re-entrant 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell

patches under static deformation at 1%, 10% and 20% compression.

The deformation patterns in Figure 6.8 support this observation. In this figure, the

deformed configurations of 4 × 4, 8 × 8, and 12 × 12 unit cell patches are showcased

for 1%, 10% and 20% compression. These compression levels are indicated by

vertical lines in Figure 6.7 as well. Here, it can be seen, that 1% compression co-

incides with the loss of stiffness due to plasticity. During the initial, mostly elastic

deformation (depicted in the top row), the patches are deformed uniformly. At a

deformation of 10%, differences in deformation are visible: Whereas in the 4 × 4

and the 8 × 8 patch, on the left and in the centre, the deformation appears sym-

metric both along the vertical axis as well the horizontal axis, the 12 × 12 patch on

the right side of the figure shows a break of symmetry along the horizontal axis, i.e.

the deformation of the top half does not mirror the deformation of the bottom half.

This is due to a localization of deformation near the bottom edge. A stronger de-

formation within a single row of unit cells leads to a stronger loss in stiffness and a

more brittle response. Once such a weak spot appears, the remaining deformation

concentrates around it. In the last row of Figure 6.8, the deformation state for 20%

compression is shown. Here, the localization is intensified and becomes visible for
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the 8 × 8 unit cell patch in the centre of the figure as well, whilst the 4 × 4 patch

on the left maintains both symmetries. All investigated patches suffer from loss of

convergence in the global Newton-Raphson scheme at different stages of compres-

sion. The common cause of these numerical problems is the contact between free

ends of beams at the left and right boundaries of the patch, as can be seen for

example in the centre of the 4 × 4 unit cell patch at both sides between the second

and third unit cell.
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Figure 6.9.: Stress-strain curves of patches with a different number of re-entrant

unit cells under fast rate compression.

For the investigations of the impact behaviour of architected metamaterials, the

consideration of dynamic deformation is of crucial importance. To this end, the

effects of different numbers of unit cells on the dynamic response of a patch are

investigated as well. In Figure 6.9 the stress-strain curves measured at the strike

face for fast rate compression are shown. For all patches, an initial rise in the stress

can be observed, followed by a loss in stiffness, that is occurring earlier for smaller

unit cells. Prior to the onset of plasticity at around 1%, smaller unit cells show a

more stiff response, attributed to differences in the distribution of inertia within the

patches. After this, smaller unit cells show a more brittle behaviour, as already seen

for the static case in Figure 6.7. For a better understanding of the dynamic beha-

viour of the different patches, again, 4 × 4, 8 × 8, and 12 × 12 unit cell patches are

shown at 6%, 12% and 24% compression in Figure 6.10. As can be seen in the

higher stress levels in Figure 6.9 compared with Figure 6.7 and the concentration

of the deformation near the moving boundary in the patches in Figure 6.10, the re-

sponse is driven by inertia and not by the structural response. This is due to the

fact that the accelerating forces are beyond the yield limit of the upper parts of the

structure. These forces lead to a localized collapse of the structure near the strike

face. The peaks observed throughout the stress-strain curves in Figure 6.9 put

further emphasis on this observation. 6% compression corresponds with the first

peak for the 8 × 8 unit cell patch, as indicated by the thin vertical line in Figure 6.9.

At this compression level, it can be seen from Figure 6.10 that the first half unit

cell is fully collapsed and the corresponding horizontal row of beams starts to come
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Figure 6.10.: Re-entrant 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell

patches under fast rate deformation at 6%, 12% and 24% compres-

sion.

into contact. The acceleration of this horizontal row of beams is the explanation

for the increased stress experienced at the strike face. The size of half a unit cell

in horizontal direction would correspond to 6.25% of the length for an 8 × 8 patch.

The effect occurs already at lower compression levels due to the finite sized beams

coming into contact already earlier. At 12% compression, showcased in the centre

row of Figure 6.10, first contact can be seen for the 4 × 4 patch as well as contact

with the second row of horizontal beams for the 8 × 8 patch. This corresponds well

with the peaks in Figure 6.9. This observation provides a rationale for the earlier oc-

currence of peaks in the stress response for a smaller unit cell size. After a nominal

compression of 24%, all deformation is concentrated at the top and the lower parts

do not show any deformation. One should note here, that the bulging of the beams

through the upper boundary is not an error, but a limitation of the employed bound-

ary conditions only constraining the nodes at the top boundary in the undeformed

configuration. The limitation is acceptable as the bulging elements are not causing

numerical issues and are connected to the rest of the lattice. Furthermore, they

are sufficiently far from the bottom boundary, which is the focus of the remaining

investigations. The remaining stress-strain curves for slow and medium compression

as well as the corresponding deformation patterns are shown in Appendix C.1.1.

6.4.2. CHIRAL UNIT CELLS
Next to the re-entrant unit cell, the behaviour of patches from chiral unit cells is

analysed. The static stress-strain curves are shown in Figure 6.11. Also for this

architecture, in these curves the onset of plasticity can be seen at 1%. Similar

to the re-entrant patches in Figure 6.7, all structures initially show a hardening re-
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Figure 6.11.: Stress-strain curves of patches with a different number of chiral unit

cells under static compression.

sponse. This hardening response is then followed by a softening response, which

is more pronounced for smaller unit cells. This is consistent with earlier observed

tendencies, that smaller unit cells lead to an earlier and stronger localization of the

deformation.

Figure 6.12.: Chiral 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches

under static deformation at 5%, 10% and 20% compression.
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The deformed configurations for 4 × 4, 8 × 8, and 12 × 12 patches at 5%, 10%

and 20% are visualized in Figure 6.12. These compression levels are marked in

Figure 6.11 by thin vertical lines. In the stress-strain curves, it can be seen, that at

5% compression both the 4 × 4 on the left and 8 × 8 patches in the centre are still

in the first hardening phase, whilst the 12 × 12 patch on the right is already in the

softening phase. Upon inspection of the deformation patterns, it can be seen, that

the 12 × 12 patch exhibits localizations of deformation (near the top of the patch),

whilst the other two still showcase uniform deformation. At 10% compression, the

12 × 12 patch on the right side of the figure shows contact, leading to a slightly stiffer

response. The 8 × 8 patch in the centre has also entered the softening phase and

showcases clearly localized deformation as well. The 4 × 4 patch on the left is near

the peak of its stress level and when examining the deformation patterns, the start

of localized deformation can be seen as well. At the last investigated compression

level of 20%, the 8 × 8 patch shows multiple points of internal contact, which cor-

responds to the global hardening of the patch. On the other hand, the 4 × 4 patch

shows no contact yet, which is consistent with the ongoing softening behaviour of

the overall patch as seen in Figure 6.11. After further deformation, beams within

the patch will come into contact, marking the transition from the softening phase to

the re-hardening phase. It should be noted, that chiral patches show strong local

asymmetries in their behaviour despite the enforced global symmetry, due to the

rotating mechanism responsible for the negative Poisson effect. For the chiral unit

cells, as is the case for the re-entrant ones, the static solution scheme suffers from

loss of convergence after a larger number of beams or the free ends of beams come

into contact.
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Figure 6.13.: Stress-strain curves of patches with a different number of chiral unit

cells under fast rate compression.

The dynamic behaviour is investigated for the chiral unit cells as well and the

resulting stress-strain curves for fast compression are shown in Figure 6.13. An

initial maximum appears around the onset of plasticity at 1% deformation. Here,

as is the case for re-entrant patches, smaller unit cells show a stiffer response not

seen in static deformation, attributed again to differences in the distribution of inertia
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within the patches. Furthermore, smaller unit cells show a more brittle response

after the first peak around 1% compression, as seen earlier for the re-entrant unit

cells in Figure 6.9, consistent with the static behaviour of both auxetic unit cells.

Afterwards all investigated patches show further peaks, appearing later for larger

unit cells, i.e. patches with a smaller number of unit cells. In order to understand

Figure 6.14.: Chiral 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches

under fast rate deformation at 6%, 12% and 24% compression.

the reason behind these peaks, the deformed patches are plotted for 6%, 12% and

24% compression and shown in Figure 6.14. All patches show a clear localization of

the deformation at the top and no deformation of the remaining parts of the structure.

At 6% deformation, for the 8 × 8 patch, half a unit cell is compressed, and contact

between the upper nodes as well as the next horizontal row of beams is achieved.

The acceleration of these beams corresponds with a peak in the stress-strain curve

seen in Figure 6.13. The same phenomenon can be seen in the 4 × 4 patch at

12% deformation, both in the deformation plots in Figure 6.14 and the stress-strain

curve in Figure 6.13. The peaks are cut off in the figure for better visibility, but

larger elements show peaks of higher magnitude, i.e. from the peak for 12 × 12 unit

cells at about 800MPa the stress level rises over approximately 2000MPa for 6 × 6

unit cells to roughly 6000MPa for the 2 × 2 unit cell patch. These phenomena are

similar to the ones observed in the re-entrant patch. Additional stress-strain curves

for slow and medium compression as well as the corresponding deformation patterns

are shown in Appendix C.1.2.
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6.4.3. HONEYCOMB UNIT CELLS
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Figure 6.15.: Stress-strain curves of patches with a different number of honey-

combs unit cells under static compression.

In order to make a comparison with the auxetic unit cells, regular honeycomb

unit cell patches with a positive Poisson’s ratio are investigated. The correspond-

ing static stress-strain curves are shown in Figure 6.15. We observe the same

kink in the curve at the onset of plasticity as for the patches with re-entrant and

chiral unit cells. For smaller unit cells neither the reduction in the hardening re-

sponse, observed for the re-entrant architecture, nor earlier softening, as for the

chiral architecture, is observed. This is also confirmed in the deformation patterns

Figure 6.16.: 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches under

static deformation at 1%, 10% and 20% compression.

of 4 × 4,8 × 8, and 12 × 12 unit cell patches in Figure 6.16. Global barrelling is clearly
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visible for the 8 × 8 and 12 × 12 cases, in the centre and on the right side respect-

ively. As the barrelling response is a global pattern we can, in Figure 6.15, observe

a convergence of the response already at smaller numbers of unit cells compared

to the two investigated auxetic structures in Figures 6.7 and 6.11, in which localized

deformation is occurring.
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Figure 6.17.: Stress-strain curves of patches with a different number of honey-

combs unit cells under fast rate compression.

For the dynamic investigation of different honeycomb patches, again the stress-

strain curves under fast compression are examined, as shown in Figure 6.17. The

initial response, prior to the onset of plasticity at 1% shows, opposed to the ob-

servations in static deformation, a stiffer response for smaller unit cells, motivated

again by differences in the distribution of inertia for different sizes of unit cells. After

this onset of plasticity, a more brittle response is observed for smaller unit cells, in

agreement with the observations made for both auxetic architectures. In the stress-

strain curves, peaks are seen at lower compression for smaller unit cells and at

higher compression levels for larger unit cells as already seen in the responses

of the two auxetic architectures. Nevertheless, fewer peaks are observed than for

the two auxetic architectures. To illustrate the reason behind this, in Figure 6.18,

the deformed shapes of 4 × 4, 8 × 8, and 12 × 12 unit cell patches at compression

levels of 6%, 12% and 24% are shown. Whereas both auxetic structures show

peaks in their stress response at a compression level of 6%, this peak is not seen

in the response of the non-auxetic patches. In the deformed shapes in Figure 6.18,

it can be seen, that none of the patches show any contact yet, as the beams at the

upper boundary do not come into contact with the beams at half a unit cell height

due to the convex structure of the honeycomb architecture. For this same reason,

a full unit cell of compression is needed for the non-auxetic honeycomb structures

to experience contact. At this point, shown in the centre row at 12% compression

for the 8 × 8 patch in the central columns and in the bottom row at 24% compres-

sion for the 4 × 4 patch on the left side, contact is seen. This corresponds with the

stress peaks in Figure 6.17, where the first peak for the 8 × 8 patch occurs at 12%

and the first peak of the 4 × 4 patch at 24%. These values are again marked by
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Figure 6.18.: 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches under

fast rate deformation at 6%, 12% and 24% compression.

thin vertical lines. For better readability of the graph, the peaks are again cut off

but are rising from about 2000MPa for the 12 × 12 patch up to about 4000MPa for

the 4 × 4 patch. The 2 × 2 unit cell patch does not show a peak in the first 33%

compression. The other stress-strain curves for slow and medium compression as

well as the corresponding deformation patterns are shown in Appendix C.1.3.

6.4.4. COMPARISON OF UNIT CELLS
Balancing the convergence behaviour in the static case, the dynamic behaviour and

the computational cost, it is decided to take 8 × 8 unit cell patches as representative.

Thus, 8 × 8 patches are used in the dynamic investigations in Sections 6.5 and 6.6

on force transmission and energy distribution.

A first comparison between 8 × 8 patches using the three architectures is shown

in Figure 6.19. In this figure, the stress-strain curves are shown for the investigated

rates. During static compression, both investigated auxetic architectures, re-entrant

and chiral, show a similar level of stress, whereas the honeycomb architecture not

only shows a higher overall level, but also a significant hardening throughout the

compression. This difference is explained by the fundamentally different deforma-

tion modes in the patches: localized collapse in the case of the re-entrant and chiral

architectures versus global barrelling in the case of the honeycomb. Also for slow

compression, the honeycomb shows higher stress levels at the strike face com-

pared to the auxetic architectures. As the static deformation patterns are less relev-

ant at higher speeds, in themedium rate, peaks begin to appear, as discussed above.

Here the re-entrant structure remains at a low stress level, and both the chiral and

honeycomb patches show a large fluctuation of similar magnitude. This is even

further emphasized for the fast rate, where the chiral and honeycomb structures
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Figure 6.19.: Comparison of the stress-strain curves at the strike face for 8 × 8

patches of different architectures for the four investigated strain rates.

again exhibit peaks of comparable magnitude, with the re-entrant patch remaining

at a lower stress level, despite a few distinct peaks. From this it can be concluded

that in all loading scenarios, the honeycomb structure outperforms the auxetic ones

regarding the stress needed to compress the patch to the same level. For all invest-

igated architectures, whilst the static deformation modes differ and only the auxetic

patches show localized deformation, during fast compression, the response is dom-

inated by inertial effects, leading to a more brittle behaviour for smaller unit cells of

all architectures, as discussed in the previous sections. Dynamic effects within the

patches will be investigated in more detail in the following.

6.5. EFFECTS OF STRAIN RATE ON THE FORCE
TRANSMISSION

In order to assess the efficacy of a protection concept, one not only needs to as-

sess the forces exhibited at the strike face, but also the transmission of those forces

through the protective layer, as was done in Chapter 5 for an emulated impact event

with focus on the local distribution of these forces. The measurement of the forces

acting on the strike face during an impact event has little information regarding the

forces acting on the back face, thus the next investigation focuses on the transmis-

sion of forces from the strike face to the back face.
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6.5.1. RE-ENTRANT PATCH

0 5 10 15 20 25 30
0

5

10

0 200 400 600 800 1,000 1,200

Compression (%)

S
tr
e
s
s
(M

P
a
)

t
m
e
ta
l

Time (µs)

Strike face Back face

Figure 6.20.: Comparison of the stress on the strike face and the back face under

slow compression for an 8 × 8 re-entrant patch.

To investigate this transmission of the force through the protective layer, a first

comparison is done between the stresses on the strike face and the back face for the

slow rate compression. The corresponding stresses, both on the strike face (the top

boundary in Figure 6.6) and on the back face (the bottom boundary in Figure 6.6),

are shown over the compression in Figure 6.20. An additional abscissa is given

depicting the time corresponding to the amount of compression at this strain rate.

The stress on the back face follows the stress on the strike face with a delay, and

both finally converge towards the same stress level. The magnitude of the delay,

especially in the first rise of the stress, can be explained by the time needed for the

elastic pressure wave to travel through the patch. Given the material parameters

laid out in Section 6.3, the pressure wave speed through a beam is

cmetal =

√
210GPa

7850 kgm−3
≈ 5172ms−1. (6.6)

Together with the height of the patch of h = 77.7mm and the angle between the

beams and the vertical of α = 24.4°, the time required for the pressure wave to

reach the bottom equals

tmetal =
h/ cos(α)

cmetal

≈ 16.5µs. (6.7)

This time is marked in Figure 6.20 with a thin vertical line and corresponds with the

first rise in stress being recorded at the back face.
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Figure 6.21.: Comparison of the stress on the strike face and the back face under

fast compression for an 8 × 8 re-entrant patch.

The behaviour of the patch under fast rate compression is then investigated, and

the resulting stresses recorded at the strike face and the back face are shown in

Figure 6.21. The delay in the stress on the back face is again visible and corres-

ponds with the time required for the stress wave through the metal tmetal. In this

graph, the peaks in the stresses on the strike face at intervals of 6.25%, corres-

ponding to half the height of a unit cell, as discussed in Section 6.4 can be seen as

well.
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Figure 6.22.: Stresses on both faces for the re-entrant patch for different compres-

sion rates.
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To compare different rates, in Figure 6.22, the stresses on both faces are plot-

ted for the investigated compression rates. On the strike face, we can observe an

increase of the stresses needed to compress the patch at the given rates. This

increase is moderate for slow and medium rate compression when compared to static

compression, but increases significantly for fast rate compression. On the back

face, it is clearly observed, that the stresses for both slow and medium rate compres-

sion approach static compression stress, despite the increase seen on the strike

face. For the fast compression case, this cannot be observed. The increase seen

here between the different compression rates is however small, when compared

to the increase in stresses on the strike face, leading to the assumption, that the

stress transmitted to the back face, after an initial peak, is in a first approximation

independent of the compression rate. These initial peaks show similar magnitudes

irrespective of the compression rate. The stresses transmitted to the back face are

reduced when compared to the stress experienced at the strike face. This is mostly

due to an increase in the dynamic stresses at the strike face, whilst the stresses at

the back face have about the same magnitude. The mechanisms of dissipation of

these forces will be discussed in Section 6.6. Plots comparing the stresses at the

strike face and the back face for static and medium rate compression can be found in

Appendix C.2.1.

6.5.2. CHIRAL PATCH
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Figure 6.23.: Comparison of the stress on the strike face and the back face under

slow compression for an 8 × 8 chiral patch.

Next to the re-entrant architecture also the dynamic effects in the chiral architec-

ture are investigated. The stresses on both faces for slow compression are shown in

Figure 6.23. In this figure, the stresses are plotted over both the compressive strain,

and the corresponding time. As for the re-entrant case, the theoretical time needed

for a pressure wave travelling through a beam tmetal ≈ 28.9µs is indicated by a ver-
tical line. This time is different from the re-entrant patch due to a different geometry
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(more explanation given in Appendix C.2.2). It can be seen in Figure 6.23, that the

pressure wave reaches the bottom significantly later than would be expected by a

wave travelling unhindered through a metal beam. This is attributed to the imped-

ance jumps at the sharp kinks in the chiral unit cell, leading to partial reflection and

conversion from pressure to shear waves. Similar to the re-entrant patch, also for

the chiral patch, the stress on both faces converge towards the same value. This

convergence is slower than for the re-entrant patch, which is consistent with the

longer times required for the stress waves to transverse the patch.
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Figure 6.24.: Comparison of the stress on the strike face and the back face under

fast compression for an 8 × 8 chiral patch (the values of the peaks out-

side the figure axis are approximately 1250MPa at 6% compression

and approximately 800MPa at 11.5% compression).

In Figure 6.24 the stresses for fast compression of the chiral patch are depicted.

The peaks can again be attributed to the acceleration of horizontal rows of beams

at half unit cells. A delay of the pressure waves reaching the bottom of the patch,

as discussed above for slow compression, can be seen again for the fast compres-

sion case. The point where the stress on the back face starts to be observable is

well beyond the plotted range of 82.5µs. Prior to this, stress on the back face is

insignificant at well below 1MPa.

In order to get a better estimation of the effect different strain rates have on the

response of the chiral patch, the stresses on both faces for different strain rates

are compared in Figure 6.25. As is the case for the re-entrant patch, the chiral

patches show an increase of stress needed for the compression of the patch at

the strike face with an increase in rate. This increase is moderate for slow and

medium rate compression, and again significantly more pronounced for the fast rate.

The stresses on the back face are less evidently approaching a common value as

is the case for the re-entrant patch. Although the compression at static, slow, and

medium rates seem to converge towards the same value, a longer time interval is

needed in order to assess this effect in more detail. This longer time interval is also

needed to be able to give an indication on the effects of the fast compression onto
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Figure 6.25.: Stresses on both faces for the chiral patch for different compression

rates.

the stresses seen at the back face, as the pressure waves through thematerial need

more time to reach the back face of the patch. This longer time interval relates to

higher compression, which results in densification and thus a response more akin

to a solid material and no longer a heterogeneous metamaterial. At this stage of

densification, the formulation of the contact stiffness reaches a limit as well, and a

more sophisticated modelling of the contact would be required. It is thus opted not

to conduct these simulations. Plots comparing the stresses at the strike face and

the back face for static and medium rate compression can be found in Appendix C.2.2.

6.5.3. HONEYCOMB PATCH
The behaviour of non-auxetic honeycombs under dynamic compression is invest-

igated as well. The stresses on the strike face and back face for the honeycomb

patches, at slow rate compression, can be seen in Figure 6.26. The time for the

pressure wave to propagate through the metal tmetal ≈ 32.9µs is indicated by a ver-
tical line (see Appendix C.2.3). The general behaviour of the honeycomb unit cell

patch, does not deviate from the auxetic unit cell patches. The time delay for the

stresses at the back face to rise roughly corresponds with the metal wave speed.

Later on stresses on both the front and strike face converge towards a common

plateau.

The behaviour of the honeycomb patch for the fast rate compression, as seen in

Figure 6.27, shows again lower stresses on the back face compared to the stresses

on the strike face. This is consistent with the observations for the auxetic patches.
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Figure 6.26.: Comparison of the stress on the strike face and the back face under

slow compression for an 8 × 8 honeycomb patch.
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Figure 6.27.: Comparison of the stress on the strike face and the back face un-

der fast compression for an 8 × 8 honeycomb patch (the values of the

peaks outside the figure axis are approximately 2500MPa at 12%

compression and approximately 900MPa at 25% compression).
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Figure 6.28.: Stresses on both faces for the honeycomb patch for different com-

pression rates.

For a better understanding of the strain rate effect in the non-auxetic patch, the

stresses on both faces are shown for the different investigated strain rates in Fig-

ure 6.28. As with the auxetic patches, we can see the stress on the back face for

slow compression approaching the stress level for the static compression. The stress

for medium compression shows large oscillations around the same level as well. Fi-

nally, at fast compression, the stress appears to be higher, which is in agreement

with the observations made for the auxetic unit cells. This increase is however neg-

ligible when compared to the increase in stress at the strike face. A much higher

increase in stress on the strike face is needed to compress the patch at the fast rate

compared to the medium, slow, and static compression cases, which is seen in the

auxetic patches as well. Plots comparing the stresses at the strike face and the

back face for static and medium rate compression can be found in Appendix C.2.3.

6.5.4. COMPARISON OF PATCHES
Summarizing the findings of this section, two observations can be made: Firstly,

that the speed of the pressure waves through the metal is a lower bound for the

stress to reach the back face. This theoretical phenomenon can also be observed

in the simulations. This lower bound is approached when more straight beams

and fewer kinks and joints are present within an architecture, resulting the chiral

patch in a significant delay after the theoretical lower limit. Secondly, the stress

amplitudes experienced at the back face appear to be largely unaffected by the

strain rate. The peak stresses experienced in all investigated rates can be regarded

as equivalent, and the final, constant stress level approaches the static compression
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value for all investigated structures. However, this is only a first approximation; a

full understanding of the impact protection effect of the different patches requires

the consideration of the force-time record and subsequent effects on the protected

material.
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Figure 6.29.: Comparison of the stresses at the back face for 8 × 8 patches of dif-

ferent architectures for the four investigated strain rates.

Both observations can also be seen by comparing the stress curves at the back

face of the three patches in Figure 6.29. In this figure, the first effect is clearly

observable as the rise in stress level appears later for patches with less straight

connections between the top and the bottom. For instance, both the re-entrant and

the honeycomb unit cell can be considered. The beams of the re-entrant patch are

24.4° off the vertical, whereas the beams for the honeycomb patch are 29.7° off,

meaning the re-entrant patch offers a more straight vertical line for the pressure

waves to the bottom compared to the honeycomb patch. The angle is however not

the only factor for the time of the waves reaching the back face, as can be seen

by the much later rise in stress for the chiral patch, of which the beams are only

28.1° off the vertical, but exhibit more kinks and joints when compared to the other

two architectures. The chiral architecture contains beams meeting in 90° angles

at their joints, amplifying this effect. Comparing the stress levels at the back face

between the architectures, static compression shows the same graph as the strike

face, resulting in Figure 6.29a being identical to Figure 6.19a. Considering higher

compression rates, the chiral architecture appears to show the lowest stress levels

at the back face, despite showing similarly high stress levels at the strike face com-

pared to the honeycomb structure. This observation is based on the slow and medium
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compression rates, as in the fast compression rate, the stress does not reach the

back face for the chiral patch within the investigated time, however a qualitatively

similar result is to be expected. These results indicate the chiral architecture as a

good candidate for impact mitigation.

6.6. LOCAL ENERGY DISTRIBUTIONS
In order to facilitate a more thorough understanding of the mechanisms exhibited in

the previous section, the SEA, as defined by Equation (6.5) spent on compression

of the patches and its subsequent distribution into various components of energy

throughout the patches is analysed. For the present analyses, the global specific

energy is split into elastic potential energy, inelastic dissipated energy, and kin-

etic energy. The spatial distribution of the elastic, dissipated, and kinetic energy

measures over the two directions of the patch, based on the nodal energy levels as

explained in Section 6.3, will be analysed as well.

6.6.1. RE-ENTRANT PATCH
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Figure 6.30.: Distribution of the SEA into different types of energy for the 8 × 8 re-

entrant patches at different strain rates.
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The first comparison is the distribution of energy in the patch at different com-

pression rates shown in Figure 6.30 for the re-entrant patch. In Figure 6.30a, static

deformation is shown. At around 1%, plastic deformation starts to occur, which

coincides with the loss in stiffness seen in Figure 6.7. During the remainder of the

analysis, the majority of the SEA put into the system is dissipated through plastic

deformation, and only a minor increase in elastically stored potential energy can

be observed. This increase can be related to the hardening present in the material

model. In Figure 6.30b, the distribution of energy for slow compression is shown.

The ratio between dissipated and potential energy remains roughly the same and

the kinetic energy contributes only a minor part to the total SEA spent on com-

pressing the material. In Figure 6.30c, the distribution of energy in the medium com-

pression scenario is shown. While the dissipated energy is still the dominant form

of energy present in the system, the amount of kinetic energy increases whilst the

potential energy vanishes. This effect is visible in a more pronounced way in Fig-

ure 6.30d, showing both contributions of the kinetic and dissipated energy being at

similar levels. Note, that the force peaks observed in Figure 6.21, can be seen in

the energy plots as well. At the half unit cell points—at multiples of 6.25%—the

kinetic energy shows a sharp increase.
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Figure 6.31.: Local distribution of energy at 20% compression for static compression

of the 8 × 8 re-entrant patch.

Next to the distribution of energy for different physical mechanisms, the distri-

bution of energy across the lattice structure is investigated. In Figure 6.31, the

deformation after 20% static compression is depicted with marginal distributions of

the energy density split into the different physical mechanisms shown at the top
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and the right of the patch. While the symmetry between the left and the right side

remains intact, the top-bottom symmetry is broken by the more localized deforma-

tion near the bottom. The plastic nature of this collapse is emphasized by a higher

specific dissipated energy near the bottom of the patch.
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Figure 6.32.: Vertical distribution of energy at 20% compression for all investigated

compression rates in the 8 × 8 re-entrant patch.

In Figure 6.32 the vertical distribution of the absorbed energy is shown for the four

investigated rates. Comparing the static results to the slow rate compression case,

in Figures 6.32a and 6.32b respectively, confirms the observation from Figure 6.30,

that the dissipated energy is responsible for the majority of the SEAneeded to com-

press the patch. Only a minor portion of the SEA is stored in potential energy, and

at slow compression, the kinetic energy contributions are of course comparatively

small. A shift of the energy distributions towards the strike face at the top of the

patch is however observed. This shift in the distributions can be seen more pro-

nounced in Figure 6.32c for the medium rate, where the dissipated energy still takes

up the majority of SEA, as discussed above. At medium compression, although the

bulk of the energy is dissipated near the top, still a significant part of the energy

is present in the lower parts of the patch. This is no longer the case for the fast

compression rate seen in Figure 6.32d. For this rate, the amounts of energy seen

at the lower parts of the structure appear negligible, and the energy distributions

show a clear increase in the relative share of kinetic energy, which is in agreement

with the observations from Figure 6.30. This negligible amount of energy in the

lower parts of the structure is in agreement with the deformation patterns shown in

Figure 6.10. As discussed above, the deformations remain small in the lower parts

of the patch at this fast rate, as also can be seen by the lack of lateral contraction

at the boundaries, that would be expected from the negative Poisson’s ratio of this

structure, resulting in negligible amounts of energy in the lower parts of the patch.
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6.6.2. CHIRAL PATCH
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Figure 6.33.: Distribution of the SEA into different types of energy for the 8 × 8 chiral

patches at different strain rates.

The energy distribution in the chiral patch under different deformation rate is ana-

lysed in the same manner. In Figure 6.33, the distribution of the SEA in potential,

kinetic, and dissipated energy is shown for different rates. The observations made

for the re-entrant patch hold for the chiral patch as well. At static deformation, the

majority of the SEA spent on compressing the material is dissipated throughout the

deformation and only a minor increase in potential energy due to hardening of the

material can be seen. At higher strain rates, the total SEA increased, as well as the

share of kinetic energy. The share of kinetic energy at the medium rate is already half

of the total energy, whereas for the re-entrant patch, this only happens at the fast

rate, indicating an increased rate sensitivity of the chiral lattice. The higher sum of

the different forms of specific internal energy compared to the externally computed

SEA seen in Figures 6.33b and 6.33d is due to interpenetration of singular beams,

that lead to divergence in the static case (Figure 6.33b) and represent an unphysical

source of energy in the dynamic simulations. Since this effect is small and does not

influence the global behaviour of the lattice, it is deemed acceptable.

The strain rate sensitivity of the chiral patch, can also be seen when comparing

the vertical distributions of energy in Figure 6.34. In this figure, the vertical dis-

tribution of energy throughout the patch is plotted for the four investigated rates.

In Figures 6.34c and 6.34d, depicting the medium and fast rate compression, the

complete concentration of energy at the top is shown. This is consistent with the
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Figure 6.34.: Vertical distribution of energy at 20% compression for all investigated

compression rates in the 8 × 8 chiral patch.

observations made in Figure 6.33 and further emphasizes the increased strain rate

sensitivity of the chiral architecture when compared to the re-entrant architecture.

The chiral patch at low rate compression, shows a similar trend compared to the

re-entrant patch. A small shift of energy towards the top can be observed, with the

energy in lower parts being more uniformly distributed. A similar shift of energy

towards the top can be observed in static compression in Figure 6.34a, this is how-

ever explained by the localized deformation in singular rows of unit cells, as shown

in Figure 6.12, where the deformation corresponding to this distribution is shown

for the 8 × 8 patch at 20% compression. The localization of deformation around the

unit cells corresponds with a significant increase in energy dissipated and only a

minor increase in elastically stored energy, as shown in Figure 6.34a.

6.6.3. HONEYCOMB PATCH
Finally, the distribution of energy in the honeycomb patch is investigated. In Fig-

ure 6.35, the different forms of energy are again compared for static, slow, medium

and fast rates of compression. Here, the phenomena observed in the re-entrant and

chiral patch, can be seen as well. The majority of the energy is dissipated and the

fraction of kinetic energy rises with increasing compression rate. Two observations

are noteworthy: Firstly, the peaks in force on the strike face observed at fast com-

pression, seen in Figure 6.27, correspond with the sudden rise of kinetic energy in

Figure 6.35d as well. In Figure 6.18 the acceleration of horizontal bars is illustrated,

leading to both force peaks and a fast rise in kinetic energy. Secondly, at medium

rate compression, the kinetic energy takes less than half of the energy in the patch,

resembling the behaviour of the re-entrant patch, distinct from the chiral patch. This

is seen by the vertical distributions of energy in Figure 6.36 as well. Here, at medium

rate, the energies are shifted to the upper boundary, but still a significant amount of
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Figure 6.35.: Distribution of the SEA into different types of energy for the 8 × 8 hon-

eycomb patches at different strain rates.
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Figure 6.36.: Vertical distribution of energy at 20% compression for all investigated

compression rates in the 8 × 8 honeycomb patch.
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energy is in the bottom part of the lattice, similar to the observations made for the

re-entrant patch. This is no longer the case for the fast rate, where energy is fully

concentrated at the upper part near the strike face. At slow compression, a nearly

linear distribution of all energies rising from the bottom to the top can be seen, with

more energy dissipated close to the strike face. Static compression shows a bulge

in the centre of the patch, consistent with the global barrelling seen in Figure 6.16.

The peaks near the top and the bottom of the distribution are attributed to the strong

deformation of elements at the fixed boundaries.

6.6.4. COMPARISON OF PATCHES
There are two commonalities between different metamaterial architectures when

considering the energy distributions. Firstly, the majority of energy spent on com-

pressing the material is dissipated by plastic deformation of the material throughout

all compression rates. At higher rates the amount of kinetic energy approaches the

level of plastically dissipated energy in the patch. This corresponds to the second

common effect at higher rates, noted in earlier sections. The behaviour is not de-

termined by the transmission of forces, but rather by the inertial forces that result

from the distribution of mass within the lattice.

0 10 20 30
0

10

20

30

40

S
E
A
(J
/k
g
)

(a) static

Re-entrant Chiral Honeycomb

0 10 20 30
0

20

40

(b) 250 s−1

0 10 20 30
0

0.1

0.2

Compression (%)

S
E
A
(k
J
/k
g
)

(c) 1000 s−1

0 10 20 30
0

1

2

Compression (%)

(d) 4000 s−1

Figure 6.37.: Comparison specific absorbed energies for 8 × 8 patches of different

architectures for the four investigated strain rates.
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For a fair comparison of the different architectures, the SEA is plotted against

the compression for the three investigated architectures. In Figure 6.37a, the SEA

can be seen for static compression. Here, the honeycomb architecture shows the

highest levels, which is consistent with the higher levels of pressure seen for this

architecture in Figure 6.19. The honeycomb patches show the highest SEA for

the investigated strain rates. For fast compression, it is noteworthy, that the chiral

patch shows similar levels of energy absorption as the honeycomb architecture up

to 12%, at which compression levels the first contact occurs for the honeycomb

leading to a steep rise in absorbed energy. This emphasizes the dominance, that

inertial effects have over the structural response of the different architectures at

high rates of deformation.

6.7. CONCLUSION
The investigations presented in this chapter offer a novel perspective on the high-

rate deformation mechanisms in different architected metamaterials employed for

impact mitigation.

It has been shown in Section 6.4, that localized failure within the investigated

auxetic architectures—re-entrant and chiral—leads to a stronger softening effect

for smaller unit cells due to a more pronounced localization of the deformation.

However, honeycombs, as an investigated non-auxetic architecture, show a global

deformation pattern, leading to a stiffer response when considering patches with

more unit cells. For higher rates, there is a shift towards deformation localizing at

the strike face, leading to a more brittle response and unit cell size dependence for

all architectures. The subsequent deformation resistance is dominated by inertia

effects, that are directly related to the geometry of the microstructure of the patch.

Next to the stresses at the strike face, also the stress levels at the back face have

been investigated in Section 6.5. In this investigation it has been shown, that the

force exerted on the back face is delayed by the wave transmission through the lat-

tice of the metamaterials. The magnitude of the transmitted forces has been shown

to be, in a first approximation, independent of the compression rate. Only at the

highest investigated compression rate the forces start to rise. This suggests, that

for an initial estimation of the force exerted at the back of the protective structure, a

set of two calculations, i.e. a static to estimate the terminal level of stress and a high

rate analysis to quantify the dynamic pulses at the rear face, might be sufficient to

estimate the force transmitted through an architected metamaterial.

The distribution of different types of energy throughout the structure of the archi-

tectedmetamaterials has been investigated as well in Section 6.6. In the static case,

the concentration of energy at the moment of localized deformation is observed for

the auxetic architectures, whereas for the globally barrelling honeycomb structure,

the energy is more evenly distributed. At higher strain rates, the distribution of en-

ergy is concentrated at the top of the lattice near the strike face, consistent with the

localized deformation patterns seen in Section 6.5. The chiral architecture shows

the highest sensitivity to strain rate, whilst the honeycomb architecture shows the

largest amount of SEA across the investigated cases.
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Throughout this study no beneficial contribution from a negative Poisson’s ratio

for impact mitigation can be found. The obtained results allow designers of protec-

tion concepts to make an informed decision on the architecture and the size of the

unit cells based on force transmission during static compression together with an

estimation of the maximum force pulse during higher rate compression. Next to the

practical applications, also new research avenues have been opened into impact

resistant metamaterials away from simply auxetic structures towards architectures

that focus on the limitation of the transmitted forces.
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Given the pace of technology,

I propose we leave math to the machines

and go play outside.

Calvin
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T hıs dissertation has challenged the prevalent opinion of previous literature

regarding the benefits of auxetic materials for impact mitigation purposes.

In doing so, a numerical model was developed and implemented, to enable

the fast and accurate analysis of different lattice materials in series of virtual ex-

periments, answering Research Question #1. Using this model, different material ar-

chitectures were designed to exhibit the same mass and stiffness and were sub-

sequently analysed. Together with a series of physical tests, Research Question #2 was

answered. In a final step, Research Question #3 was investigated using the developed

numerical model for different microstructural sizes of both auxetic and non-auxetic

materials. The answers given to the questions are given in the following sections:

7.1. COMPUTATIONAL MODELLING OF ARCHITECTED
METAMATERIALS

In Chapters 2 and 3, the analytical description and numerical discretization used

for an efficient and accurate description of the behaviour of the nonlinear dynamic

behaviour of architected materials was presented. The discussed methods were

implemented using the [JIVE]-framework as a basis for later investigations.

For the kinematic description, geometrically exact beams following Crisfield and

Jelenić [CJ99] and Simo and Vu-Quoc [SV86] were used. These beams were sup-

plemented with a contact formulation following Wriggers [Wri06]. Time marching

needed for the dynamic processes during impact mitigation was achieved by an

explicit time stepping scheme for fast computation at high speeds requiring small

time steps for precise detection of contact events. Accuracy of the scheme was

ensured by adapting the time step size based on the error estimate from a Milne-

device of the predictor-corrector pairing employed.

For the material response of the beams in Chapter 3, the plasticity constants

from literature (cf. [HKS21; HKS22]) were augmented to allow for arbitrary geomet-

ric scaling of the inelastic material behaviour. This allowed to describe the plastic

hardening behaviour of the investigated material to be applied to a wide range

of metamaterial architectures. In this context the approach proposed by Smriti,

Kumar and Steinmann [SKS20] for the direct implementation of elastoplasticity in

the beam-type strains and stresses was adapted using an explicit return mapping

scheme to allow for a fast computation during global explicit time marching.

This allows for answering the first research question as follows:

RESEARCH QUESTION #1

How can lattice structures be efficiently and accur-

ately modelled using numerical tools?

Geometrically nonlinear beams contribute to a

numerically efficientmethod for themodelling of

lattice structures and allow for inclusion of ma-

terial non-linearities, contact, and proper geo-

metric scaling in an accurate manner.
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The efficiency of the model has been shown in Chapter 5, were the number of

DOFs in comparison with a continuum-based model was reduced by more than one

order of magnitude. The accuracy of the model was demonstrated by comparison

with physical as well as other numerical models in Chapter 5 and by validating with

results from literature in Chapters 2 and 3.

CONTRIBUTIONS
• Development of a geometrically consistent scaling strategy for the kinematic

hardening behaviour of elastoplastic beams.

• Application of an explicit return mapping scheme to the direct modelling of

inelastic material behaviour in beams.

• Application of geometrically exact beams with inelastic material behaviour to

static and dynamic problems.

• Implementation of a modular research code, incorporating numerical bench-

marks and detailed documentation [dynLattice].1

7.2. INFLUENCE OF THE POISSON EFFECT ON ENERGY
ABSORPTION

Chapter 4 established a set of unit cells from different architectures with the same

effective properties to enable an unbiased comparison between different material

architectures. The development of these elastic properties under compression and

shear was evaluated and related to the deformations of the beams in the architec-

ture. It was demonstrated, that the Poisson’s ratio does not provide a satisfactory

explanation for the difference in energy absorption under localized impact phenom-

ena. For an impact scenario, the stiffness of the material in impact direction and its

development during the deformation was identified as a crucial component for en-

ergy absorption, together with the lateral stress wave velocity as a proxy for energy

dispersion. Both must remain sufficiently high throughout the deformation for all

unit cells in the patch to enable high absorption of energy from the impactor. These

initial results were subsequently verified experimentally using lattice architectures

of the same mass in Chapter 5. Re-entrant and conventional honeycomb unit cells

were designed to exhibit similar mass for one comparison and similar stiffness for

a second. Patches of these unit cells were manufactured and experimentally sub-

jected to localized high-rate deformation. In this study, no effect of the Poisson’s

ratio on the energy absorption could be seen as well. The materials with a negative

Poisson’s ratio densified earlier, leading to reduced duration for energy absorption,

resulting in higher stresses exerted at the protected side of the structure.

The second research question can thus be answered:

1available at https://github.com/hortulanusT/dynLattice

https://github.com/hortulanusT/dynLattice
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RESEARCH QUESTION #2

How does the Poisson effect influence energy ab-

sorption in architected materials?

The Poisson effect in itself does not influence

the energy absorption capacity of an architected

material.

CONTRIBUTIONS
• Development of distinct sets of equivalent unit cells from ten different meta-

material architectures.

• Analysis of the evolution of the stiffness properties throughout the static de-

formation of unit cells.

• Determination of the elastic energy absorption capabilities at different strain

rates and sizes of impactors.

• Experimental investigation of same mass and same stiffness metamaterial

patches under high-speed impact and analysis of the temporal and local force

distribution.

7.3. INFLUENCE OF THE POISSON EFFECT ON FORCE
TRANSMISSION

Next to the global effects experimentally investigated, in Chapter 5 also the dis-

tributions of the force transmission throughout the different lattices were investig-

ated. The experimental studies demonstrated that auxetic architectures showcase

a higher maximum total load on the protected side attributed to earlier densification

of the lattice. Accompanying the experimental study, numerical models showed,

that the local distribution of the pressure onto the protected side throughout the im-

pact is concentrated for auxetic materials. These concentrations result in higher

pressures for the auxetic architectures and lower pressures for the patches with a

positive Poisson’s ratio. This behaviour in force transmission was further investig-

ated in Chapter 6 for different compression rates using the architectures developed

in Chapter 4 to exhibit equivalent density and stiffness. Here, auxetic architectures

exhibited a trend towards localized deformation during static compression, whereas

the investigated non-auxetic architecture showed a stable, global deformation pat-

tern. For higher strain rates, the static deformation patterns disappear, and the

deformation concentrates at the face subjected to impact loading. This leads to

a stronger influence of the geometric distribution of masses. Even at the highest

strain rates the size of the unit cells was seen to determine the behaviour of the

patch at the loading edge.

These investigations lead to the answer for the third research question:
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RESEARCH QUESTION #3

How does the Poisson effect influence force trans-

mission in architected materials?

Anegative Poisson’s ratio concentrates the load

over a smaller time frame and a narrower zone.

CONTRIBUTIONS
• Analysis of the pressure distributions on the protected side for different meta-

material architectures under impact loading.

• Determination of the energy absorption capabilities at different strain rates

including material non-linearities.

• Determination of force transfer mechanisms at different strain rates and their

relation to the size of the unit cells.

7.4. CONCLUSION
In this dissertation, the high rate compressive behaviour of architected auxetic

metamaterials was compared rigorously with non-auxetic metamaterials and the

evolution of properties in architected materials under high-rate compression were

thoroughly scrutinized. It was shown using both numerical and physical tests, that

auxetic architected materials offer no benefit in energy absorption capabilities and

transmitted forces. Chapter 4 showed worse performance of all auxetic architec-

tures compared to the non-auxetic ones regarding the elastic potential to absorb

energy in the majority of investigated scenarios. Chapter 5 showed higher peak

pressures being exerted on the protected side of the protective structure at the

same levels of absorbed energy for all three variants of the auxetic re-entrant hon-

eycomb compared to all four variants of the non-auxetic conventional honeycomb

at both equivalent mass and stiffness properties. Chapter 6 demonstrated lower

absorbed energies and higher transmitted forces of the auxetic architectures com-

pared to the non-auxetic architecture at all investigated rates. All results thus lead

to the following answer for the title question:

TITLE QUESTION

Are auxetics better for protection?

Auxetics are not better for protection.

Aset of auxetic structures, that cover variants of the two different auxetic mechan-

isms, were rigorously compared to a single non-auxetic architecture. By showing

that the non-auxetic structure is able to absorb more specific energy as well as

showing, that an auxetic structure concentrates forces, the general claim “Auxetics

are better for protection” is disproven.
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7.5. RECOMMENDATIONS FOR FURTHER RESEARCH
Whilst challenging the basis for auxetic architected metamaterials for impact mit-

igation, the present work serves as a starting point for further research into other

architected materials for this purpose.

Especially promising is the class of aperiodic, but ordered structures (e.g. [Qi&al24;

Ros&al25]), showing staggered buckling and thus a less pronounced drop in stiffness

as observed for the investigated structures. An intriguing question here is the inter-

action between quasi-static deformation patterns and the dynamic concentration of

deformation near the loading edge in different aperiodic patterns. Of interest as well

are the analysis of transmission of waves throughout the aperiodic lattice. These

dynamic properties are yet unexplored, but appear promising in the quest for more

lightweight materials mitigating impacts.

Another promising approach would be the investigation of graded metamateri-

als (e.g. [Fu&al24; GKS24; Kap&al23; VW24]) under different strain rates, in which

the concentration of different types of energy and collapse patterns could be either

taken advantage of or mitigated for better distribution of energies throughout the

structure.

Next to the use of grading of a single material, also the use of multiple architec-

ted materials throughout the structure, would be a promising avenue for upcoming

research. A noteworthy mention here are so-called interpenetrating lattices (e.g.

[Fit&al24; WGB23; Whi&al21]), that consist of two independent structures made from

separate materials. These materials have already shown remarkable properties

with regard to an increased fracture toughness (cf. [WGB23]), that could make them

an interesting candidate for protective applications.

Finally, the investigations presented in this dissertation are only concerned with

the behaviour of plain auxetic architected materials. In practical protection con-

cepts, they are usually embedded in a layered structure. Investigation of the ef-

fects of different lattice architectures in these structures would be of great interest

and required before a final answer regarding the efficacy of any material in a wider

protection concept can be given.

Besides impact scenarios, the developed numerical toolkit also allows for the in-

vestigation of lattice architectures in other scenarios. Especially the vibration trans-

mission behaviour of lightweight structures in for example satellite launches would

be of interests. The in Chapters 2 and 3 developed toolkit also allows the simulation

of three-dimensional structures, which was not done in this dissertation. The mod-

elling of three-dimensional structures would allow the investigation of more complex

loading scenarios as well as architectures. Of particular interest here would be to

examine how the tangent properties of metamaterials change throughout deforma-

tion, e.g. can a transversely isotropic material be architected to retain this property

during finite compression or shear?

Next to investigations using the present tools, the developed numerical tools can

be extended as well. The discussed inclusion of elastoplastic parameters should

be extended to a more general set of cross-sections for the beam. The inclusion of

viscous effects in the material into the modelling of the beam would be of interest to

capture a wider range of material behaviour in the formulation for the beam, as done
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by Le Barbenchon and Lißner [LL24]. Whilst this is done conceptually already (cf.

[SHT84; Wee&al23]), a direct link relating the microstructural behaviour to constants

on beam-level is yet to be found. Besides the discussion of single beams, in the

modelling of lattice structures, themodelling of material accumulation near the joints

has in this dissertation only been done through numerical fitting of simple hardening

of single elements. A more robust approach, that could also account for different

joint angles is needed.

Besides beam structures, also shell structures could be modelled intrinsically us-

ing Kirchhoff-Love or Reissner-Mindlin theories. These shell structures would allow

for a wider range of architected materials, see e.g. [GYM22; Mey&al22; MTM24].

Especially the description of inelastic phenomena prevalent during impact scen-

arios in shell structures could allow for further investigations into the possibilities of

architected materials for lightweight impact protection.
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A.1. STRUCTURAL CONFIGURATIONS
Amore detailed description of the tuning process for each architecture is described

here. As can be seen in Figure 4.4a, the re-entrant honeycomb has three variables

that define the geometry, namely the sizes of the base b and the tilted bars l as
well as the angle of these tilted bars α. Finally, the thickness of the bars d is a

parameter to be determined. This study assumes (linear) elastic material behaviour.

Structures with geometric similitude can be assumed to have no difference in their

behaviour. Therefore, the values of b, l, and d by themselves are not important, but

the ratio between them is. We chose the ratio of the tilted bar length to the base

length r = l
b and the ratio of the thickness to the base length t = d

b . In this study,

the angle α ranges from 20° to 85°, the beam length ratio t ranges from 1
3 to 4

3 , and

the beam thickness ratio t ranges from 0.01 to 0.1. For small angles, the re-entrant

beams may not intersect, so the additional constraint r < 1
2 cosα is introduced.

The arrowhead structure is defined by the two angles α ∈ (5°,60°), β ∈ (45°,75°)
(see Figure 4.5a) and the thickness of the beams relative to the height of the struc-

ture t = d
h ∈ (0.01, 0.1), as can be seen in Figure 4.5a. To get realistic structures,

the constraint 3 tanα < tanβ was added.

For the second auxetic mechanism, as explained in Section 4.2.1, a chiral and

an anti-chiral lattice have been selected. As can be seen in Figure 4.2a and Fig-

ure 4.3a, the only parameters to set are the angle α ∈ (5°,60°) and the thickness

of the beams relative to the width of the unit cell t = d
b ∈ (0.01, 0.1). Since the

antichiral unit cell is based on the chiral one, the parameters and their respective

ranges are identical.

Finally, the properties of a non-auxetic architecture are also examined for com-

parison. For simplicity, the same parameter range is chosen as for the re-entrant

honeycomb, but with angles α ∈ (95°,145°), resulting in a positive Poisson’s ratio

(see [Gib&al97]).

For each considered architecture, in a first step, the elastic properties in the un-

deformed configuration are recorded for all valid combinations in a full factorial ex-

ploration space. These results are then used to create a (linearized) mapping for

the four linear elastic constants of an orthotropic material in 2D as well as the relat-

ive density P 7→ (Ey, Ex, νyx, G, ρrel). Where P is the point in the design space that

describes the variables described above. Using this mapping, a target function is

defined by calculating the root sum squared of the error terms. In the case of the

desired vertical Young’s modulus E?
y = 300MPa and relative density ρ?rel = 0.1, this

results in the following objective function

t(P) =

√(
Ey(P)− E?

y

E?
y

)2

+

(
ρrel(P)− ρ?rel

ρ?rel

)2

(A.1)

This objective function is nowminimized in the parameter spaces shown in Table 4.1

with the reported constraints using the scipy1 implementation of the DIRECT optim-

izer.

1version 1.9.2
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With the procedure described above, all architectures are tuned to exhibit the

desired properties. All combinations of E?
y = 200MPa, 300MPa and 400MPa and

ρ?rel = 0.067, 0.100 and 0.133 are designed. The resulting orthotropic material

properties are given in Tables A.1 to A.9 accepting some discrepancy between the

linearized target function space and the actual computations. The corresponding

configurations are shown below the tables.

Table A.1.: Resulting properties and unit cells for E?
y = 200MPa, ρ?rel = 0.067

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.032 75.59 − 0.82 0.067 198 14 −3.77 −0.26 2 2
re-entrant (90°) 0.028 84.99 − 0.39 0.067 195 2,465 −0.21 −2.69 5 5
arrowhead (90°) 0.025 8.55 53.06 − 0.067 194 8 −4.79 −0.20 1,291 1,291
chiral 0.058 21.71 − − 0.067 199 199 −0.38 −0.38 67 4
antichiral 0.061 19.01 − − 0.067 198 198 −0.70 −0.70 3 3
honeycomb 0.050 111.82 − 0.82 0.067 201 96 1.42 0.68 16 16
honeycomb (90°) 0.045 127.38 − 0.72 0.067 201 56 1.87 0.52 18 18

Table A.2.: Resulting properties and unit cells for E?
y = 200MPa, ρ?rel = 0.100

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.037 65.33 − 0.62 0.100 198 74 −1.60 −0.60 6 6
re-entrant (90°) 0.034 63.18 − 0.46 0.100 196 208 −0.94 −1.00 6 6
arrowhead 0.025 5.27 70.70 − 0.100 198 1,873 −0.25 −2.39 1,398 1,397
arrowhead (90°) 0.031 15.91 62.35 − 0.100 199 60 −1.77 −0.53 1,555 1,559
chiral 0.073 31.56 − − 0.100 200 200 −0.38 −0.38 97 68
antichiral 0.080 30.17 − − 0.100 199 200 −0.70 −0.70 9 9
honeycomb 0.094 124.94 − 1.13 0.100 202 309 0.79 1.21 97 97
honeycomb (90°) 0.095 116.11 − 1.16 0.100 202 396 0.69 1.36 82 82
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Table A.3.: Resulting properties and unit cells for E?
y = 200MPa, ρ?rel = 0.133

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.035 53.37 − 0.35 0.133 199 801 −0.47 −1.89 11 11
re-entrant (90°) 0.075 84.29 − 0.80 0.133 199 8,025 −0.11 −4.55 36 36
arrowhead 0.035 26.84 68.20 − 0.133 198 125 −1.22 −0.77 1,401 1,401
arrowhead (90°) 0.028 23.86 73.89 − 0.133 199 462 −0.63 −1.46 1,136 1,136
chiral 0.082 38.53 − − 0.133 200 200 −0.38 −0.38 19 178
antichiral 0.091 38.87 − − 0.133 200 200 −0.69 −0.69 17 17
honeycomb 0.052 135.63 − 0.39 0.133 200 3,916 0.20 3.93 57 57
honeycomb (90°) 0.099 96.35 − 1.03 0.133 201 8,033 0.12 4.70 73 73

Table A.4.: Resulting properties and unit cells for E?
y = 300MPa, ρ?rel = 0.067

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.025 74.07 − 0.39 0.067 296 138 −1.40 −0.66 3 3
re-entrant (90°) 0.027 85.00 − 0.34 0.069 292 2,611 −0.24 −2.17 5 5
arrowhead (90°) 0.025 7.15 53.27 − 0.067 290 9 −5.59 −0.17 1,353 1,353
chiral 0.060 18.55 − − 0.067 299 299 −0.38 −0.38 10 −16
antichiral 0.063 15.84 − − 0.067 298 298 −0.69 −0.69 4 4
honeycomb 0.035 109.26 − 0.47 0.067 301 255 1.04 0.88 10 10
honeycomb (90°) 0.036 121.56 − 0.51 0.067 301 95 1.73 0.55 12 12

A.2. BOUNDARY CONDITIONS AND TANGENT PROPERTIES

In this Appendix, a more detailed description of the implementation of the PBCs

and the subsequent computation of the elastic tangent properties using these, as

discussed in Section 4.3.1, is given.
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Table A.5.: Resulting properties and unit cells for E?
y = 300MPa, ρ?rel = 0.100

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.035 65.62 − 0.43 0.100 297 273 −1.00 −0.92 8 8
re-entrant (90°) 0.046 81.67 − 0.50 0.100 297 2,937 −0.26 −2.60 15 15
arrowhead 0.021 11.60 74.90 − 0.100 296 468 −0.73 −1.16 924 924
arrowhead (90°) 0.030 13.81 64.34 − 0.100 295 80 −1.85 −0.50 1,583 1,583
chiral 0.078 28.11 − − 0.100 299 299 −0.38 −0.38 53 19
antichiral 0.085 26.09 − − 0.100 299 299 −0.69 −0.69 10 10
honeycomb 0.094 119.69 − 1.14 0.100 302 246 1.08 0.88 88 88
honeycomb (90°) 0.096 125.63 − 1.17 0.100 302 189 1.23 0.77 101 101

Table A.6.: Resulting properties and unit cells for E?
y = 300MPa, ρ?rel = 0.133

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.045 61.08 − 0.57 0.133 298 191 −1.21 −0.78 11 11
re-entrant (90°) 0.070 83.33 − 0.69 0.133 298 6,987 −0.15 −3.55 37 37
arrowhead 0.025 42.99 75.37 − 0.133 294 24 −3.43 −0.28 686 686
arrowhead (90°) 0.041 18.86 62.75 − 0.133 299 133 −1.44 −0.64 1,911 1,911
chiral 0.089 35.19 − − 0.133 300 300 −0.38 −0.38 156 35
antichiral 0.099 34.70 − − 0.133 299 299 −0.69 −0.69 19 19
honeycomb 0.097 131.09 − 0.83 0.133 303 1,333 0.45 1.99 163 163
honeycomb (90°) 0.099 99.51 − 0.94 0.133 303 5,152 0.20 3.42 86 86

A.2.1. PERIODIC BOUNDARY CONDITIONS

As can be seen in Figure A.1, the boundary of a (rectangular) unit cell is split into

4 sections ΓT ,ΓR,ΓB ,ΓL such that ΓT represents all the nodes on the top side of

the unit cell, ΓR all the nodes on the right side, ΓB all on the bottom side, and finally

ΓL the nodes on the left side. This figure shows for all 5 investigated unit cells

(re-entrant honeycomb unit cell in Figure A.1a, arrowhead unit cell in Figure A.1b,

chiral unit cell in Figure A.1c, antichiral unit cell in Figure A.1d, and the regular
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Table A.7.: Resulting properties and unit cells for E?
y = 400MPa, ρ?rel = 0.067

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.026 76.05 − 0.40 0.067 398 136 −1.63 −0.56 4 4
arrowhead (90°) 0.023 6.54 57.28 − 0.067 392 14 −5.12 −0.18 1,386 1,386
chiral 0.061 16.44 − − 0.067 399 399 −0.37 −0.37 2 −1
antichiral 0.064 13.85 − − 0.067 395 395 −0.68 −0.68 4 4
honeycomb 0.059 103.41 − 1.20 0.067 399 28 3.67 0.26 15 15
honeycomb (90°) 0.031 143.10 − 0.56 0.067 399 13 5.50 0.17 10 10

Table A.8.: Resulting properties and unit cells for E?
y = 400MPa, ρ?rel = 0.100

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.035 67.69 − 0.40 0.100 397 343 −1.02 −0.88 8 8
re-entrant (90°) 0.045 83.36 − 0.46 0.100 394 4,132 −0.23 −2.41 16 16
arrowhead 0.015 31.67 79.43 − 0.099 380 36 −3.18 −0.30 435 435
arrowhead (90°) 0.030 12.18 64.54 − 0.100 395 85 −2.05 −0.44 1,633 1,633
chiral 0.081 25.65 − − 0.100 399 399 −0.37 −0.37 33 44
antichiral 0.088 23.33 − − 0.100 398 398 −0.69 −0.69 11 11
honeycomb 0.054 118.49 − 0.49 0.100 402 937 0.61 1.43 37 37
honeycomb (90°) 0.092 133.79 − 1.17 0.100 401 97 1.99 0.48 107 107

honeycomb unit cell in Figure A.1e) the empty corners. We therefore add ‘ghost’

nodes, not connected to the rest of the mesh, in the corners for the application of

boundary conditions as described in the following. The four nodes in the corners

start with node 0 at the bottom left side and are then numbered counter-clockwise.
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Table A.9.: Resulting properties and unit cells for E?
y = 400MPa, ρ?rel = 0.133

Angles α, β are in and the moduli Ex, Ey, Gxy, Gyx in MPa.
Geometry t α β r ρrel Ey Ex νyx νxy Gxy Gyx

re-entrant 0.045 62.12 − 0.49 0.133 397 340 −1.03 −0.89 13 13
re-entrant (90°) 0.056 73.13 − 0.54 0.133 398 1,497 −0.47 −1.78 23 23
arrowhead 0.026 33.15 74.81 − 0.133 397 71 −2.30 −0.41 896 896
arrowhead (90°) 0.025 18.09 76.47 − 0.133 395 747 −0.67 −1.27 978 978
chiral 0.094 32.74 − − 0.133 399 399 −0.37 −0.37 28 −69
honeycomb 0.100 127.62 − 0.83 0.133 404 1,208 0.55 1.64 162 162
honeycomb (90°) 0.092 98.75 − 0.82 0.133 404 5,988 0.20 3.03 80 80

The sets for corresponding sides need to be ordered in a way, such that they

correspond towards each other, i.e. in a rectangular unit cell for every node on the

bottom edge, we need to find a node on the top edge, for which the relationship

XT = XB +

[
0
h

]
(A.2)

of the respective reference position vectorsX holds, where h is the height of the unit
cell. With its width w, a similar relationship holds to identify corresponding nodes

between the left and right edges:

XR = XL +

[
w
0

]
. (A.3)

After having identified all nodes that need to be taken into account, it is made sure

that the rotation of one node is equal to the rotation of the corresponding node on the

opposite side by enforcing the following two boundary conditions on the rotational

displacement vectors ϑ:

ϑiT = ϑiB , ∀ iT ∈ ΓT , iB ∈ ΓB | XiT = XiB +

[
0
h

]
, (A.4)

ϑiR = ϑiL, ∀ iR ∈ ΓR, iL ∈ ΓL | XiR = XiL +

[
w
0

]
. (A.5)

The translational displacement vectors u are now coupled via the controlling nodes

at the corresponding sides as (sets are omitted for better readability)

uiT = uiB + (u3 − u0) , (A.6)

uiR = uiL + (u1 − u0) , (A.7)
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while the corner nodes are fixed to enforce the desired displacement gradientHij =
∂ui

∂Xj
,

u0 =

[
0
0

]
u1 = H ·

[
w
0

]
u3 = H ·

[
0
h

]
. (A.8)
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Figure A.1.: Unit cells of (a) the re-entrant honeycomb, (b) the arrowhead structure,

(c) the chiral structure, (d) the antichiral structure, and (e) the honey-

comb structure with notation used for establishing the PBCs.
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It should be noted, that the ghost nodes are not connected to any element in the

FE implementation and thus do not contribute to the internal force vector or stiff-

ness matrix, but their effect stems from constraining the system whilst using them

as helper nodes. Also, in order to prevent rigid body movement, a single node

connected to the structure needs to have all translational DOFs being equal to 0.
The 1st Piola-Kirchhoff stress tensor P is subsequently calculated based on its

definition
f

Γ0
= Pn0. (A.9)

Where f are the forces on the surface, Γ0 is the area of the undeformed surface

and n0 is the normal to the undeformed surface. One can now rearrange it for the

different surfaces and average over two opposite surfaces for numerical accuracy:

P11 =
f1(R)− f1(L)

ΓR + ΓL
(A.10)

P12 =
f1(T )− f1(B)

ΓT + ΓB
(A.11)

P21 =
f2(R)− f2(L)

ΓR + ΓL
(A.12)

P22 =
f2(T )− f2(B)

ΓT + ΓB
(A.13)

A.2.2. COMPUTATION OF THE TANGENT PROPERTIES
We start from the relationships

δP = C4 : δH (A.14)

and

δH = S4 : δP . (A.15)

In order to simplify notation, P,H are now column-vectors and S4,C4 are now the

matrices [S], [C]

δ


P11

P12

P21

P22

 =


c1111 c1112 c1121 c1122
c1211 c1212 c1221 c1222
c2111 c2112 c2121 c2122
c2211 c2212 c2221 c2222

 δ


H11

H12

H21

H22

 (A.16)

or with the index combination (11) ⇒ 1, (12) ⇒ 2, (21) ⇒ 3, (22) ⇒ 4

δ


P1

P2

P3

P4

 =


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

 δ


H1

H2

H3

H4

 . (A.17)

The tangent stiffness matrix [C] is computed as described in Section 4.3.1 and the

tangent compliance matrix [S] is afterwards computed by

[S] = (0.5[C] + 0.5[C]T )−1, (A.18)
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where the symmetrization of the stiffness is done to minimize numerical errors.

For the derivation of the (linearized) Young’s modulus and Poisson’s ratio, we

need a relation between δPi and δHi, where the orthogonal stress is zero, whilst

the orthogonal strain is free
δH1

0
0

δH2

 =


s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44



δP1

δP2

δP3

0

 . (A.19)

Starting with the third line of (A.19), we obtain

0 = s31δP1 + s32δP2 + s33δP3, (A.20)

δP3 =
−s31
s33

δP1 +
−s32
s33

δP2, (A.21)

δP3 = f31δP1 + f32δP2. (A.22)

Inserting now (A.22) in the second line of (A.19), we obtain

0 = s21δP1 + s22δP2 + s23δP3, (A.23)

0 = s21δP1 + s22δP2 + s23(f31δP1 + f32δP2), (A.24)

0 = (s21 + s23f31)δP1 + (s22 + s23f32)δP2, (A.25)

δP2 =
−s21 − s23f31
s22 + s23f32

δP1, (A.26)

δP2 = f21δP1. (A.27)

This can now be inserted into (A.22)

δP3 = f31δP1 + f32δP2, (A.28)

δP3 = (f31 + f32f21)δP1, (A.29)

which gives for the first line of (A.19)

δH1 = s11δP1 + s12δP2 + s13δP3, (A.30)

δH1 = s11δP1 + s12f21δP1 + s13(f31 + f32f21)δP1, (A.31)

δH1 = (s11 + s12f21 + s13(f31 + f32f21))δP1. (A.32)

Here we use

δH1 =
1

E1
δP1 (A.33)

to determine the Young’s modulus.

In order to derive the Poisson’s ratio, we need to consider the last equation of

(A.19) and insert all previous results:

δH4 = s41δP1 + s42δP2 + s43δP3, (A.34)

δH4 = (s41 + s42f21 + s43(f31 + f32f21))δP1, (A.35)

δH4 =
s41 + s42f21 + s43(f31 + f32f21)

s11 + s12f21 + s13(f31 + f32f21)
δH1. (A.36)
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Again we use the relationship

δH4 = −ν14δH1 (A.37)

to determine the Poisson’s ratio. Other properties are obtained again in a similar

fashion by exchanging the indices.

For the derivation of the linearizedmodulus of constrainedmotion in one direction,

we need a relation between δPi and δHi from
δH1

0
0
0

 =


s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44



δP1

δP2

δP3

δP4

 . (A.38)

Using the last line of (A.38), we get

0 = s41δP1 + s42δP2 + s43δP3 + s44δP4, (A.39)

δP4 = −s41
s44

δP1 −
s42
s44

δP2 −
s43
s44

δP3, (A.40)

δP4 = f41δP1 + f42δP2 + f43δP3. (A.41)

Now putting (A.41) into the third line of (A.38) results in

0 = s31δP1 + s32δP2 + s33δP3 + s34δP4, (A.42)

0 = s31δP1 + s32δP2 + s33δP3 + s34(f41δP1 + f42δP2 + f43δP3), (A.43)

(s33 + s34f43)δP3 = (−s31 − s34f41)δP1 + (−s32 − s34f42)δP2, (A.44)

δP3 =
−s31 − s34f41
s33 + s34f43

δP1 +
−s32 − s34f42
s33 + s34f43

δP2, (A.45)

δP3 = f31δP1 + f32δP2. (A.46)

Inserting this back into (A.41) gives

δP4 = f41δP1 + f42δP2 + f43(f31δP1 + f32δP2), (A.47)

δP4 = (f41 + f43f31)δP1 + (f42 + f43f32)δP2. (A.48)

Now (A.46) and (A.48) can be inserted into the second row of (A.38) giving:

0 = s21δP1 + s22δP2 + s23δP3 + s24δP4, (A.49)

0 = s21δP1 + s22δP2 + s23(f31δP1 + f32δP2)

+ s24((f41 + f43f31)δP1 + (f42 + f43f32))δP2, (A.50)

(s22 + s23f32 + s24(f42 + f43f32))δP2 =

(−s21 − s23f31 − s24(f41 + f43f31))δP1, (A.51)
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δP2 =
−s21 − s23f31 − s24(f41 + f43f31)

s22 + s23f32 + s24(f42 + f43f32)
δP1, (A.52)

δP2 = f21δP1. (A.53)

Again this can be inserted back into (A.46) and (A.48):

δP3 = (f31 + f32f21)δP1, (A.54)

δP4 = (f41 + f43f31 + (f42 + f43f32)f21)δP1. (A.55)

Finally, (A.53), (A.54), and (A.55) are inserted back into (A.38) to give

δH1 = (s11 + s12f21 + s13(f31 + f32f21)

+ s14(f41 + f43f31 + (f42 + f43f32)f21))δP1. (A.56)

Now by comparing this to

δH1 =
1

M1
δP1 (A.57)

we can calculate the constrained modulus.

The other constrained modulus as well as the shear moduli are obtained in the

same fashion.
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B.1. CONSTRUCTION DRAWINGS

Figure B.1.: Plunger with main dimensions in mm.

B.2. EXPERIMENTAL AND NUMERICAL COMPARISONS
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Figure B.2.: Comparison of experimental and numerical results for the SS config-

uration.
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Figure B.3.: Comparison of experimental and numerical results for the SM config-

uration.

B.3. STRUCTURAL SAMPLES COMPARISONS
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Figure B.4.: Comparison of the average pressure over the back-face for the SM

configuration using the continuum-based model.
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Figure B.5.: Comparison of wider samples for the SM configuration using the beam-

based model.
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Figure B.6.: Comparison of smaller unit cells for the SS configuration of Length 2

using the beam-based model.
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Figure B.7.: Comparison of smaller unit cells for the SM configuration using the

beam-based model.
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Figure B.8.: Comparison of smaller unit cells for the SM configuration Length 1 using

the beam-based model.
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B.4. DEFORMATION PATTERNS AT DIFFERENT SPEEDS
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Figure B.9.: Deformation patterns of the ARH90 SM sample of Length 1 at different

impact velocities and compression states.
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Figure B.10.: Deformation patterns of the ARH90 SS sample of Length 1 at different

impact velocities and compression states.
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Figure B.11.: Deformation patterns of the CHW SM sample of Length 1 at different

impact velocities and compression states.
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Figure B.12.: Deformation patterns of the CHW SS sample of Length 1 at different

impact velocities and compression states.
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Figure B.13.: Deformation patterns of the CHL SM sample of Length 1 at different

impact velocities and compression states.
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Figure B.14.: Deformation patterns of the CHL SS sample of Length 1 at different

impact velocities and compression states.
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Figure B.15.: Deformation patterns of the ARH90 SM sample of Length 2 at different

impact velocities and compression states.
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Figure B.16.: Deformation patterns of the ARH90 SS sample of Length 2 at different

impact velocities and compression states.
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Figure B.17.: Deformation patterns of the CHW SM sample of Length 2 at different

impact velocities and compression states.
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Figure B.18.: Deformation patterns of the CHW SS sample of Length 2 at different

impact velocities and compression states.
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Figure B.19.: Deformation patterns of the CHL SM sample of Length 2 at different

impact velocities and compression states.
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Figure B.20.: Deformation patterns of the CHL SS sample of Length 2 at different

impact velocities and compression states.
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C.1. ADDITIONAL NUMBER OF UNIT CELLS PLOTS
C.1.1. RE-ENTRANT UNIT CELLS

0 5 10 15 20 25 30
0

5

10

Compression (%)

S
tr
e
s
s
(M

P
a
)

2x2 4x4 6x6 8x8 10x10 12x12

Figure C.1.: Stress-strain curves of patches with a different number of re-entrant

unit cells under slow rate compression.

Figure C.2.: Re-entrant 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell

patches under slow rate deformation at 1%, 10% and 20% compres-

sion.
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Figure C.3.: Stress-strain curves of patches with a different number of re-entrant

unit cells under medium rate compression.

Figure C.4.: Re-entrant 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell

patches under medium rate deformation at 1%, 10% and 20% com-

pression.
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C.1.2. CHIRAL UNIT CELLS
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Figure C.5.: Stress-strain curves of patches with a different number of chiral unit

cells under slow rate compression.

Figure C.6.: Chiral 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches

under slow rate deformation at 1%, 10% and 20% compression.
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Figure C.7.: Stress-strain curves of patches with a different number of chiral unit

cells under medium rate compression.

Figure C.8.: Chiral 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches

under medium rate deformation at 1%, 10% and 20% compression.
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C.1.3. HONEYCOMB UNIT CELLS
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Figure C.9.: Stress-strain curves of patches with a different number of honeycombs

unit cells under slow rate compression.

Figure C.10.: 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches under

slow rate deformation at 1%, 10% and 20% compression.
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Figure C.11.: Stress-strain curves of patches with a different number of honey-

combs unit cells under medium rate compression.

Figure C.12.: 4 × 4 (left), 8 × 8 (centre), and 12 × 12 (right) unit cell patches under

medium rate deformation at 1%, 10% and 20% compression.
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C.2. ADDITIONAL STRAIN RATE PLOTS
C.2.1. RE-ENTRANT PATCH
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Figure C.13.: Comparison of the stress on the strike face and the back face under

static compression for an 8 × 8 re-entrant patch.
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Figure C.14.: Comparison of the stress on the strike face and the back face under

medium compression for an 8 × 8 re-entrant patch.
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C.2.2. CHIRAL PATCH
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Figure C.15.: Comparison of the stress on the strike face and the back face under

static compression for an 8 × 8 chiral patch.
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Figure C.16.: Comparison of the stress on the strike face and the back face under

medium compression for an 8 × 8 chiral patch.

For the chiral patch, the time needed for a pressure stress wave to travel through

the metal is computed from the height of the patch h = 132mm and the angle

between the beams and the vertical of α = 28.1°:

tmetal =
h/ cos(α)

cmetal

≈ 28.9µs. (C.1)
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C.2.3. HONEYCOMB PATCH
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Figure C.17.: Comparison of the stress on the strike face and the back face under

static compression for an 8 × 8 honeycomb patch.
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Figure C.18.: Comparison of the stress on the strike face and the back face under

medium compression for an 8 × 8 honeycomb patch.

For the honeycomb patch, the time needed for a pressure stress wave to travel

through the metal is computed from the height of the patch h = 148mm and the

angle between the beams and the vertical of α = 29.7°:

tmetal =
h/ cos(α)

cmetal

≈ 32.9µs. (C.2)
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